精英家教网 > 高中数学 > 题目详情
14.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出$15\sqrt{2}m$,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3π}{16}$D.$\frac{12+3π}{32}$

分析 由题意可知所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,即可求得.

解答 解:当该人在池中心位置时,呼唤工作人员的声音可以传$15\sqrt{2}m$,那么当构成如图所示的三角形时,工作人员才能及时的听到呼唤声,
所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,$P=\frac{60}{160}=\frac{3}{8}$.
故选B.

点评 本题考查几何概型,根据题意绘制出图形,利用数形结合,求得结果,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为角A,B,C的对边,cos2A=cosA,a=2$\sqrt{3}$,4$\sqrt{3}$S△ABC=a2+b2-c2
(1)求角A;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从抛物线y2=4x的准线l上一点P引抛物线的两条切线PA,PB,A,B为切点,若直线AB的倾斜角为$\frac{π}{3}$,则P点的纵坐标为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,P是双曲线mx2-ny2=1(m>0,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥P-ABC中,D、E分别是三角形PAC和三角形ABC的外心,则下列判断一定正确的是(  )
A.DE∥PBB.当AB=BC且PA=AC时DE∥PB
C.当且仅当AB=BC且PA=AC时,DE⊥ACD.DE⊥AC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a,b,c分别是内角A,B,C的对边,满足acosB+bcosA=2ccosC.
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,求边长c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱锥P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2$\sqrt{3}$,PA⊥平面ABC,若三棱锥P-ABC的外接球的表面积为24π,则该三棱锥的体积为$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,现从该几何体的实心外接球中挖去该几何体,则剩余几何体的体积是(  )
A.$\frac{9π}{4}$-$\frac{1}{6}$B.$\frac{9π}{16}$-$\frac{1}{2}$C.$\frac{9π}{16}$-$\frac{1}{6}$D.$\frac{9π}{8}$-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(Ⅰ)求甲获得这次比赛胜利的概率;
(Ⅱ)求经过5局比赛,比赛结束的概率.

查看答案和解析>>

同步练习册答案