精英家教网 > 高中数学 > 题目详情
3.已知A,B,P是双曲线mx2-ny2=1(m>0,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{2}$

分析 设出点的坐标,求出斜率,将点的坐标代入方程,两式相减,再结合${k_{PA}}•{k_{PB}}=\frac{2}{3}$,即可求得结论.

解答 解:由mx2-ny2=1得$\frac{{x}^{2}}{\frac{1}{m}}$-$\frac{{y}^{2}}{\frac{1}{n}}$=1,
则a2=$\frac{1}{m}$,b2=$\frac{1}{n}$,则$\frac{{b}^{2}}{{a}^{2}}$=$\frac{m}{n}$
由题意,设A(x1,y1),P(x2,y2),则B(-x1,-y1
∴kPA•kPB=$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$,
A,B代入两式相减可得$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$=$\frac{m}{n}$,
∵${k_{PA}}•{k_{PB}}=\frac{2}{3}$,∴$\frac{m}{n}$=$\frac{2}{3}$,
∴e2=1+$\frac{{b}^{2}}{{a}^{2}}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
∴e=$\frac{\sqrt{15}}{3}$.
故选:B.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,利用点差法,转化为斜率之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若复数z满足z+z•i=2+3i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{2π}{3}$)(ω>0)的部分图象如图所示,则函数g(x)=cos(ωx+$\frac{2π}{3}$)的图象的一条对称轴方程为(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$=2,$\overrightarrow a$•$({\overrightarrow b-\overrightarrow a})$=-3,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且3Sn+an-3=0,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{2}$log2(1-Sn+1),求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在空间直角坐标系中,已知A(3,0,a),B(0,3,-2),C(1,1,-1),若平面ABC过坐标原点,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出$15\sqrt{2}m$,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3π}{16}$D.$\frac{12+3π}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P(x,y)是直线l:y=kx+2(k>0)上一动点,过P作圆(x-2)2+(y-2)2=1的切线,当切线长最短为$\sqrt{2}$时,此时直线l的斜率k=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x>0,求f(x)=$\frac{12}{x}$+3x的最小值.

查看答案和解析>>

同步练习册答案