精英家教网 > 高中数学 > 题目详情
14.若复数z满足z+z•i=2+3i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由z+z•i=2+3i,得$z=\frac{2+3i}{1+i}$,然后利用复数代数形式的乘除运算化简,求出在复平面内z对应的点的坐标,则答案可求.

解答 解:由z+z•i=2+3i,
得$z=\frac{2+3i}{1+i}$=$\frac{(2+3i)(1-i)}{(1+i)(1-i)}=\frac{5+i}{2}=\frac{5}{2}+\frac{1}{2}i$,
则在复平面内z对应的点的坐标为:($\frac{5}{2}$,$\frac{1}{2}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x}{1+x}$,数列{an}满足a1=a(a为常数,且a>0),an+1=f(an),n∈N*
(Ⅰ)计算a2,a3,a4,并由此猜想出数列{an}的通项公式;
(Ⅱ)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个三棱柱被一个平面截去一部分,剩下的几何体的三视图如图所示,则该几何体的体积为20.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

如图,是有公共顶点的等腰直角三角形,,点为射线与射线的交点.

(1)求证:

(2)若,把绕点旋转,

①当时,求的长;

②直接写出旋转过程中线段长的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD,点O为CD的中点,连接OM.
(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)若AB=BC=2,求三棱锥A-BDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知条件p:|x+1|<2,条件q:3x<3,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为角A,B,C的对边,cos2A=cosA,a=2$\sqrt{3}$,4$\sqrt{3}$S△ABC=a2+b2-c2
(1)求角A;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)和曲线C2:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{3}$=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的$\sqrt{5}$倍.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=$\frac{\sqrt{2}}{2}$,垂足为C,求证:直线AC恒过x轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,P是双曲线mx2-ny2=1(m>0,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

同步练习册答案