精英家教网 > 高中数学 > 题目详情
9.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD,点O为CD的中点,连接OM.
(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)若AB=BC=2,求三棱锥A-BDM的体积.

分析 (I)由平面CMD⊥平面BCD可得OM⊥平面BCD,又AB⊥平面BCD,得出OM∥AB,从而得出OM∥平面ABD;
(II)过O作OH⊥BD,则可证OH⊥平面ABD.于是VA-BDM=VM-ABD=VO-ABD

解答 (Ⅰ)证明:∵△CMD是等腰直角三角形,∠CMD=90°,点O为CD的中点,
∴OM⊥CD.
∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM?平面CMD,
∴OM⊥平面BCD.
∵AB⊥平面BCD,
∴OM∥AB.
又∵AB?平面ABD,OM?平面ABD,
∴OM∥平面ABD.
(Ⅱ)解:由(Ⅰ)知OM∥平面ABD,
∴点M到平面ABD的距离等于点O到平面ABD的距离
过O作OH⊥BD,垂足为点H,
∵AB⊥平面BCD,OH?平面BCD,
∴OH⊥AB.
∵AB?平面ABD,BD?平面ABD,AB∩BD=B,
∴OH⊥平面ABD.
∵AB=BC=2,△BCD是等边三角形,
∴BD=2,OD=1,$OH=OD•sin{60°}=\frac{{\sqrt{3}}}{2}$.
∴VA-BDM=VM-ABD=VO-ABD=$\frac{1}{3}×\frac{1}{2}×AB•BD•OH$=$\frac{1}{3}×\frac{1}{2}×2×2×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{3}$.
∴三棱锥A-BDM的体积为$\frac{{\sqrt{3}}}{3}$.

点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,其上下顶点分别为C1,C2,点A(1,0),B(3,2),AC1⊥AC2
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三角形ABC中,AB=x,BC=1,O是AC的中点,∠BOC=45°,记点C到AB的距离为h(x).
(1)求h(x)的表达式,并注明x的取值范围;
(2)求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S=$\frac{{\sqrt{3}}}{12}$c,则ab的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{1}{2}$x,则双曲线的离心率为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z+z•i=2+3i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正数组成的等比数列{an},若a2•a19=100,那么a8+a13的最小值为(  )
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}满足a1=1,an•an-1+2an-an-1=0(n≥2),则使得ak>$\frac{1}{2016}$的最大正整数k为(  )
A.5B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且3Sn+an-3=0,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{2}$log2(1-Sn+1),求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

同步练习册答案