分析 (1)通过3Sn+an-3=0与3Sn-1+an-1-3=0作出可知an=$\frac{1}{4}$an-1,进而可知数列{an}是首项为$\frac{3}{4}$、公比为$\frac{1}{4}$的等比数列,计算即得结论;
(2)通过(1)裂项可知$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,进而并项相加即得结论.
解答 解:(1)∵3Sn+an-3=0,
∴当n≥2时,3Sn-1+an-1-3=0,
两式相减得:an=$\frac{1}{4}$an-1,
又∵3S1+a1-3=0,即a1=$\frac{3}{4}$,
∴数列{an}是首项为$\frac{3}{4}$、公比为$\frac{1}{4}$的等比数列,
故其通项公式an=$\frac{3}{4}$•$\frac{1}{{4}^{n-1}}$=$\frac{3}{{4}^{n}}$;
(2)由(1)可知1-Sn+1=1-$\frac{1}{3}$(3-an+1)=$\frac{1}{{4}^{n+1}}$,
∴bn=$\frac{1}{2}$log2(1-Sn+1)=-n-1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴Tn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2n+4}$.
点评 本题考查数列的通项及前n项和,考查裂项相消法,涉及对数的性质等基础知识,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{15}}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | DE∥PB | B. | 当AB=BC且PA=AC时DE∥PB | ||
| C. | 当且仅当AB=BC且PA=AC时,DE⊥AC | D. | DE⊥AC |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com