精英家教网 > 高中数学 > 题目详情
6.在三棱锥P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2$\sqrt{3}$,PA⊥平面ABC,若三棱锥P-ABC的外接球的表面积为24π,则该三棱锥的体积为$\frac{2\sqrt{6}}{3}$.

分析 作出草图,根据底面△ABC与截面圆的关系计算截面半径,根据球的面积计算球的半径,利用勾股定理计算球心到截面的距离,得出棱锥P-ABC的高.

解答 解过A作平面ABC所在球截面的直径AD,连结BD,CD,
∵AB=AC,∠BAC=120°,
∴∠ABC=∠ACB=∠ADC=∠ADB=30°.
∴∠BCD=∠CBD=∠BDC=60°.即△BCD是等边三角形.
∵BC=2$\sqrt{3}$,∴AD=1+3=4.
过球心O作OM⊥平面ABC,则M为AD的中点,
∴AM=2.
设外接球半径为r,则4πr2=24π,∴r=$\sqrt{6}$.即OA=$\sqrt{6}$.
∴OM=$\sqrt{2}$.
∵PA⊥平面ABC,
∴PA=2OM=2$\sqrt{2}$.
∴VP-ABC=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×1×2\sqrt{2}$=$\frac{2\sqrt{6}}{3}$.
故答案为:$\frac{2\sqrt{6}}{3}$.

点评 本题考查棱柱、棱锥、棱台的体积,考查空间想象能力和思维能力,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.数列{an}满足a1=1,an•an-1+2an-an-1=0(n≥2),则使得ak>$\frac{1}{2016}$的最大正整数k为(  )
A.5B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且3Sn+an-3=0,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{2}$log2(1-Sn+1),求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出$15\sqrt{2}m$,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3π}{16}$D.$\frac{12+3π}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且与y轴正半轴的交点为(0,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与C交于A、B两点,AB=2,求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P(x,y)是直线l:y=kx+2(k>0)上一动点,过P作圆(x-2)2+(y-2)2=1的切线,当切线长最短为$\sqrt{2}$时,此时直线l的斜率k=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为±$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

某商店销售10台型和20台型电脑的利润为4000元,销售20台型和10台型电脑的利润为3500元.

(1)求每台型电脑和型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中型电脑的进货量不超过A型电脑的2倍.设购进掀电脑台,这100台电脑的销售总利润为元.

①求的关系式;

②该商店购进型、型各多少台,才能使销售利润最大?

(3)实际进货时,厂家对型电脑出厂价下调)元,且限定商店最多购进型电脑70台.若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a=log0.20.3,b=log0.30.2,c=1,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

同步练习册答案