精英家教网 > 高中数学 > 题目详情
18.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为±$\frac{2\sqrt{3}}{3}$.

分析 设P(x0,y0)根据定义点M与焦点F的距离等于P到准线的距离,求出x0,然后代入抛物线方程求出y0即可求出坐标.然后求解直线的斜率.

解答 解:根据定义,点P与准线的距离也是2P,
设M(x0,y0),则P与准线的距离为:x0+$\frac{p}{2}$,
∴x0+$\frac{p}{2}$=2p,x0=$\frac{3}{2}$p,
∴y0=±$\sqrt{3}$p,
∴点M的坐标($\frac{3}{2}$p,±$\sqrt{3}$p).
直线MF的斜率为:$\frac{±\sqrt{3}p}{\frac{3}{2}p}$=±$\frac{2\sqrt{3}}{3}$.
故答案为:±$\frac{2\sqrt{3}}{3}$.

点评 本题考查了抛物线的定义和性质,解题的关键是根据定义得出点M与焦点F的距离等于M到准线的距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,平面PBC⊥平面ABCD,PB=PC=$\sqrt{2}$,E是PB的中点,AD∥BC,AD⊥CD,BC=2CD=2AD=2.
(Ⅰ)求证:AE∥平面PCD;
(Ⅱ)设F是线段CD上的点,若CF=$\frac{1}{3}$CD,求三棱锥F-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥P-ABC中,D、E分别是三角形PAC和三角形ABC的外心,则下列判断一定正确的是(  )
A.DE∥PBB.当AB=BC且PA=AC时DE∥PB
C.当且仅当AB=BC且PA=AC时,DE⊥ACD.DE⊥AC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱锥P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2$\sqrt{3}$,PA⊥平面ABC,若三棱锥P-ABC的外接球的表面积为24π,则该三棱锥的体积为$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在某校统考中,甲、乙两班数学学科前10名的成绩如表:
(I)若已知甲班10位同学数学成绩的中位数为125,乙班10位同学数学成绩的平均分为130,求x,y的值;
(Ⅱ)设定分数在135分之上的学生为数学尖优生,从甲、乙两班的所有数学尖优生中任两人,求两人在同一班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,现从该几何体的实心外接球中挖去该几何体,则剩余几何体的体积是(  )
A.$\frac{9π}{4}$-$\frac{1}{6}$B.$\frac{9π}{16}$-$\frac{1}{2}$C.$\frac{9π}{16}$-$\frac{1}{6}$D.$\frac{9π}{8}$-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-m-ln2x
(Ⅰ)若m=1,求函数f(x)的极小值;
(Ⅱ)设m≤2,证明:f(x)+ln2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C过坐标原点,面积为2π,且与直线l:x-y+2=0相切,则圆C的方程是(x+$\sqrt{2}$)2+(y+$\sqrt{2}$)2=2或(x-$\sqrt{2}$)2+(y-$\sqrt{2}$)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知复数z=m2-1+(m+1)i(其中m∈R,i是虚数单位)是纯虚数,则复数m+i的共轭复数是1-i.

查看答案和解析>>

同步练习册答案