分析 (1)根据数列的函数特征,得到an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,化简整理得到$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{3}$($\frac{1}{{a}_{n}}$-1),当t=$\frac{3}{5}$时,得到{$\frac{1}{{a}_{n}}$-1}是以$\frac{2}{3}$为首项,以$\frac{1}{3}$为公比的等比数列,即可求出通项公式.
(2)由(1)求出数列{an}的通项公式,根据an+1>an对一切n∈N*都成立,得到$\frac{1}{t}$-1<3($\frac{1}{t}$-1),解得即可.
解答 (Ⅰ)证明:∵an+1=f(an),f(x)=$\frac{3x}{2x+1}$,
∴an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{3}$•$\frac{1}{{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{3}$($\frac{1}{{a}_{n}}$-1),
∵a1=t=$\frac{3}{5}$,
∴$\frac{1}{{a}_{1}}$-1=$\frac{5}{3}$-1=$\frac{2}{3}$,
∴{$\frac{1}{{a}_{n}}$-1}是以$\frac{2}{3}$为首项,以$\frac{1}{3}$为公比的等比数列,
∴$\frac{1}{{a}_{n}}$-1=$\frac{2}{3}$•($\frac{1}{3}$)n-1=$\frac{2}{{3}^{n}}$,
∴an=$\frac{{3}^{n}}{{3}^{n}+2}$
(2)由(1)可知$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{3}$($\frac{1}{{a}_{n}}$-1),
∵a1=t,
∴$\frac{1}{{a}_{1}}$-1=$\frac{1}{t}$-1
∴{$\frac{1}{{a}_{n}}$-1}是以$\frac{1}{t}$-1为首项,以$\frac{1}{3}$为公比的等比数列,
∴$\frac{1}{{a}_{n}}$-1=($\frac{1}{t}$-1)($\frac{1}{3}$)n-1,
∴an=$\frac{{3}^{n-1}}{{3}^{n-1}+(\frac{1}{t}-1)}$,
∵an+1>an对一切n∈N*都成立,
∴$\frac{{3}^{n}}{{3}^{n}+(\frac{1}{t}-1)}$>$\frac{{3}^{n-1}}{{3}^{n-1}+(\frac{1}{t}-1)}$,
∴$\frac{1}{t}$-1<3($\frac{1}{t}$-1),
解得0<t<1
故t的取值范围为(0,1).
点评 本题主要考查了等比数列的定义通项公式的求法以及数列恒成立,考查学生的运算求解能力及推理论证能力,属中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com