4£®¡÷OPQÖУ¬|$\overrightarrow{OP}$+$\overrightarrow{OQ}$|=|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|=4£®
£¨1£©Çó¡÷OPQÃæ»ýµÄ×î´óÖµ£»
£¨2£©ÈôµãMÂú×ã$\overrightarrow{QP}$=4$\overrightarrow{QM}$£¬ÎÊ£º|$\overrightarrow{OM}$|ÊÇ·ñÓÐ×î´óÖµ£¿ÈôÓУ¬Çó³ö×î´óÖµ£»ÈôûÓУ®

·ÖÎö £¨1£©¸ù¾ÝÏòÁ¿µÄ¼¸ºÎÒâÒå¿ÉµÃ$\overrightarrow{OP}$¡Í$\overrightarrow{OQ}$£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ºÍ»ù±¾²»µÈʽ¼´¿ÉÇó³ö×îÖµ£®
£¨2£©¸ù¾ÝÏòÁ¿µÄ¼¸ºÎÒâÒå¿ÉµÃ|$\overrightarrow{OM}$|=$\frac{1}{4}$|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|=$\frac{1}{4}$¡Á4=1£¬¹ÊֵΪ³£Êý£®

½â´ð ½â£º£¨1£©|$\overrightarrow{OP}$+$\overrightarrow{OQ}$|=|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|=4
¡à$\overrightarrow{OP}$¡Í$\overrightarrow{OQ}$£¬
¡àS¡÷OPQ=$\frac{1}{2}$OP•OQ¡Ü$\frac{1}{2}$•£¨$\frac{OP+OQ}{2}$£©2=$\frac{1}{2}$¡Á$\frac{£¨OP+OQ£©^{2}}{4}$=$\frac{1}{2}$¡Á$\frac{16}{4}$=2£¬
£¨2£©¡ß$\overrightarrow{QP}$=4$\overrightarrow{QM}$£¬
¡à$\overrightarrow{OM}$=$\frac{1}{4}$$\overrightarrow{QP}$=$\frac{1}{4}$£¨$\overrightarrow{OP}$-$\overrightarrow{OQ}$£©£¬
¡à|$\overrightarrow{OM}$|=$\frac{1}{4}$|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|=$\frac{1}{4}$¡Á4=1£¬
¡à|$\overrightarrow{OM}$|µÄÖµÊdz£Êý£¬ÎÞ×î´óÖµ£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄ¼¸ºÎÒâÒåºÍÈý½ÇÐεÄÃæ»ý¹«Ê½ºÍ»ù±¾²»µÈʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÇúÏß$C£º\frac{x^2}{m}+\frac{y^2}{n}=1£¨m£¾0£¬n£¾0£©$ÓëÕý·½ÐÎL£º|x|+|y|=4µÄ±ß½çÏàÇУ®
£¨1£©Çóm+nµÄÖµ£»
£¨2£©ÉèÖ±Ïßl£ºy=x+b½»ÇúÏßCÓÚA£¬B£¬½»LÓÚC£¬D£¬ÊÇ·ñ´æÔÚµÄÕâÑùµÄÇúÏßC£¬Ê¹µÃ|CA|£¬|AB|£¬|BD|³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öʵÊýbµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¼¯ºÏM=N={x¡ÊN|0¡Üx¡Ü3}£¬¶¨Ò庯Êýf£ºM¡úN£¬ÇÒÒÔACΪµ×±ßµÄµÈÑü¡÷ABCµÄ¶¥µã×ø±ê·Ö±ðΪA£¨0£¬f£¨0£©£©£¬B£¨1£¬f£¨1£©£©£¬C£¨2£¬f£¨2£©£©£¬ÔòÔÚËùÓÐÂú×ãÌõ¼þµÄµÈÑü¡÷ABCÖÐÈÎȡһ¸ö£¬È¡µ½Ñü³¤Îª$\sqrt{10}$µÄµÈÑüÈý½ÇÐεĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{6}$D£®$\frac{1}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®µ×±ß±ß³¤Îª1£¬²àÀⳤΪ$\sqrt{2}$µÄÕýËÄÀâÖùABCD-A1B1C1D1µÄ¶Ô½ÇÏßAC1µÄ³¤¶ÈΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªm¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦Â¡¢¦ÃÊÇÈý¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôm¡Î¦Á£¬m¡Ín£¬Ôòn¡Í¦ÁB£®Èôm¡Í¦Á£¬m¡Ín£¬Ôòn¡Î¦Á
C£®Èôm¡În£¬m?¦Á£¬n?¦Â£¬Ôò¦Á¡Î¦ÂD£®Èôm¡În£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬M£¬N·Ö±ðÊÇBC£¬CDµÄÖе㣬Èô$\overrightarrow{AC}$=¦Ë$\overrightarrow{AM}$+¦Ì$\overrightarrow{BN}$£¬Ôò¦Ë+¦Ì=$\frac{8}{5}$ £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³¹¤³§ÎªÁ˶ÔÐÂÑз¢µÄÒ»ÖÖ²úÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½Èç±íÊý¾Ý£º
µ¥¼Ûx£¨Ôª£©88.28.48.68.89
ÏúÁ¿y£¨¼þ£©908483807568
£¨1£©Ç󻨹éÖ±Ïß·½³Ì$\widehat{y}$=bx+a£¬a=$\overline{y}$-b$\overline{x}$£»
£¨2£©Ô¤¼ÆÔÚ½ñºóµÄÏúÊÛÖУ¬ÏúÁ¿Óëµ¥¼ÛÈÔÈ»·þ´Ó£¨1£©ÖеĹØÏµ£¬ÇҸòúÆ·µÄ³É±¾ÊÇ4Ôª/¼þ£¬ÎªÊ¹¹¤³§»ñµÃ×î´óÀûÈ󣬸òúÆ·µÄµ¥¼ÛÓ¦¶¨Îª¶àÉÙÔª£¿£¨ÀûÈó=ÏúÊÛÊÕÈë-³É±¾£©
ÇóÏßÐԻع鷽³ÌϵÊý¹«Ê½b=$\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬a=$\overline{y}$-b$\overline{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªf£¨x£©=ex+2xf¡ä£¨1£©£¬Ôòf¡ä£¨-1£©=e-1-2e£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=lnx-ax2+£¨a-2£©x £¨a¡ÊR£©
£¨1£©Èôf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬ÇóaµÄÖµ£»
£¨2£©µ±x¡Ê[a2£¬a]ʱ£¬Çóº¯Êýy=f£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸