分析 (1)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1}\\{x+y=4}\end{array}\right.$,得(n+m)x2-8mx+16m-mn=0,由此利用韦达定理能求出m+n.
(2)若|CA|,|AB|,|BD|成等差数列,则|AB|=$\frac{4\sqrt{2}}{3}$,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1}\\{y=x+b}\end{array}\right.$,得(n+m)x2+2bmx+mb2-mn=0.由此利用根的判别式、韦达定理、弦长公式,结合已知条件能求出结果.
解答 解:(1)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1}\\{x+y=4}\end{array}\right.$,得(n+m)x2-8mx+16m-mn=0,
∴△=64m2-4(m+n)(16m-mn)=0,
化简,得4mn(m+n)-64mn=0,
又m>0,n>0,∴mn>0,∴m+n=16.
(2)若|CA|,|AB|,|BD|成等差数列,
则2|AB|=|CA|+|BD|,∴3|AB|=4$\sqrt{2}$,即|AB|=$\frac{4\sqrt{2}}{3}$,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1}\\{y=x+b}\end{array}\right.$,得(n+m)x2+2bmx+mb2-mn=0.
由△=(2bm)2-4(n+m)(mb2-mn)=-4nmb2+4n2m+4m2n>0,
得b2<m+n=16,且{x}_{1}+{x}_{2}=\frac{-2bm}{n+m},{x}_{1}{x}_{2}=\frac{m{b}^{2}-mn}{n+m}$,
∴|AB|=$\sqrt{1+{k}^{2}}•\frac{\sqrt{-4nm{b}^{2}+4{n}^{2}m+4{m}^{2}n}}{|a|}$=$\sqrt{2}•\frac{\sqrt{4mn(16-{b}^{2})}}{16}$=$\frac{4\sqrt{2}}{3}$,
∴$\sqrt{(16-{b}^{2})mn}$=$\frac{32}{3}$,
∴$\frac{32}{3}•\frac{1}{\sqrt{16-{b}^{2}}}$=$\sqrt{mn}≤\frac{m+n}{2}=8$,
∴${b}^{2}≤\frac{128}{9}$,即有-$\frac{8\sqrt{2}}{3}≤b≤\frac{8\sqrt{2}}{3}$,符合b2<m+n=16,
∴当实数b的取值范围是[-$\frac{8\sqrt{2}}{3},\frac{8\sqrt{2}}{3}$]时,存在的这样的曲线C,使得|CA|,|AB|,|BD|成等差数列.
点评 本题考查两数和的求法,考查满足三条线段成等差数列的直线是否存在的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,c>d,则a-c>b-d | B. | 若a>b,c>d,则ac>bd | ||
| C. | 若ac>bc,则a>b | D. | 若$\frac{a}{c^2}<\frac{b}{c^2}$,则a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (±3$\sqrt{3}$,0) | B. | (±$\sqrt{3}$,0) | C. | (0,±3$\sqrt{3}$) | D. | (0,±$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com