精英家教网 > 高中数学 > 题目详情
3.设f0(x)=cosx,${f_1}(x)=f_0^/(x)$,${f_2}(x)=f_1^/(x)$,…,${f_{n+1}}(x)=f_n^/(x)$(n∈N),则f2016(x)=cosx.

分析 求出f1(x)=f0′(x)=-sinx,f2(x)=f1′(x)=-cosx,f3(x)=f2′(x)=sinx,f4(x)=f3′(x)=cosx…从第五项开始,fn(x)的解析式重复出现,每4次一循环,由此能求出f2016(x)的值

解答 解:∵设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N),
∴∵f0(x)=cosx,
∴f1(x)=f0′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx

从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f2016(x)=f4×504(x)=f0(x)=cosx,
故答案为:cosx

点评 本题考查导数性质的应用,是中档题,解题时要认真审,注意三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.作y=sin(2x+$\frac{π}{3}$)x∈[$\frac{π}{12}$,$\frac{4π}{3}$]的图象,要求:
(1)列出数据表,标明单位长度,用“五点法”作图;
(2)根据图象求直线y=1与曲线y=sin(2x+$\frac{π}{3}$)x∈[$\frac{π}{12}$,$\frac{4π}{3}$]所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,曲线$C:\frac{x^2}{m}+\frac{y^2}{n}=1(m>0,n>0)$与正方形L:|x|+|y|=4的边界相切.
(1)求m+n的值;
(2)设直线l:y=x+b交曲线C于A,B,交L于C,D,是否存在的这样的曲线C,使得|CA|,|AB|,|BD|成等差数列?若存在,求出实数b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$,过右焦点F2作双曲线的弦AB,且|AB|=5,设该双曲线的另一焦点为F1,求△ABF1的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时f(x)满足对任意的x1,x2∈[0,2]恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0,则(  )
A.f(3)<f(-1)<f(6)B.f(-1)<f(3)<f(6)C.f(6)<f(3)<f(-1)D.f(6)<f(-1)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.(  )
A.2.5,4B.2.5,3C.4,2.5D.3,2.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M=N={x∈N|0≤x≤3},定义函数f:M→N,且以AC为底边的等腰△ABC的顶点坐标分别为A(0,f(0)),B(1,f(1)),C(2,f(2)),则在所有满足条件的等腰△ABC中任取一个,取到腰长为$\sqrt{10}$的等腰三角形的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.底边边长为1,侧棱长为$\sqrt{2}$的正四棱柱ABCD-A1B1C1D1的对角线AC1的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=ex+2xf′(1),则f′(-1)=e-1-2e.

查看答案和解析>>

同步练习册答案