分析 (1)设等差数列{an}的公差为d,利用等差数列的系统公司与求和公式可得an.由点(2,b2),(1,b3),落在直线x-8y=0上,可得2-8b2=0,1-8b3=0,解得b2,b3.利用等比数列的系统公司可得bn.
(2)an+bn=(3n-5)+$(\frac{1}{2})^{n}$.利用等差数列与等比数列的求和公式可得:数列{an+bn}的前n项和为Tn.
解答 解:(1)设等差数列{an}的公差为d,∵a7=16,S6=33,∴$\left\{\begin{array}{l}{{a}_{1}+6d=16}\\{6{a}_{1}+\frac{6×5}{2}×d=33}\end{array}\right.$,解得a1=-2,d=3,
∴an=-2+3(n-1)=3n-5.
∵点(2,b2),(1,b3),落在直线x-8y=0上,∴2-8b2=0,1-8b3=0,解得b2=$\frac{1}{4}$,b3=$\frac{1}{8}$.
∴公比q=$\frac{\frac{1}{8}}{\frac{1}{4}}$=$\frac{1}{2}$,∴bn=$(\frac{1}{2})^{n}$.
(2)an+bn=(3n-5)+$(\frac{1}{2})^{n}$.
∴数列{an+bn}的前n项和为Tn=[-2+1+…+(3n-5)]+$[\frac{1}{2}+(\frac{1}{2})^{2}$+…+$(\frac{1}{2})^{n}]$
=$\frac{n(-2+3n-5)}{2}$+$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$
=$\frac{3{n}^{2}-7n}{2}$+1-$(\frac{1}{2})^{n}$.
点评 本题考查了等比数列与等差数列的通项公式及其求和公式、函数的性质,查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 10 | C. | 8 | D. | 2+log35 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2log2x与y=log2x2 | B. | y=x0与y=1 | ||
| C. | y=$\sqrt{{x}^{2}}$与y=$\root{3}{{x}^{3}}$ | D. | y=x与y=logaax(a>0且a≠1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com