精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=6sinωxcosωx-8cos2ωx+3(ω>0),y=f(x)+1的部分图象如图所示,且f(x0)=4,则f(x0+1)=(  )
A.6B.4C.-4D.-6

分析 利用三角函数恒等变换的应用化简函数解析式可得f(x)=5sin(2ωx-φ)-1,其中sinφ=$\frac{4}{5}$,cosφ=$\frac{3}{5}$,由函数图象可求周期T,由f(x0)=4,利用正弦函数的对称性可求sin[2ω(x0+1)-φ)=-1,利用正弦函数的周期性进而可求f(x0+1)的值.

解答 解:∵f(x)=6sinωxcosωx-8cos2ωx+3
=3sin2ωx-4cos2ωx-1
=5sin(2ωx-φ)-1,其中sinφ=$\frac{4}{5}$,cosφ=$\frac{3}{5}$,
∴设函数f(x)的最小正周期为T,则$\frac{3}{4}$T=(θ+$\frac{3}{2}$)-θ=$\frac{3}{2}$,可得:T=2,
∵f(x0)=4,可得:sin(2ωx0-φ)=1,即f(x)关于x=x0对称,而x=x0+1与x=x0的距离为半个周期,
∴sin[2ω(x0+1)-φ)=-1,
∴f(x0+1)=5sin[2ω(x0+1)-φ]-1=5×(-1)-1=-6.
故选:D.

点评 本题主要考查了三角函数的图象和性质,考查了数形结合思想的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若不等式|x-2|+|x-3|>|k-1|对任意的x∈R恒成立,则实数k的取值范围是(  )
A.[2,4]B.[0,2]C.(2,4)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|+|x-2|,x∈R
(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;
(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求$\frac{3}{m}$+$\frac{2}{n}$+$\frac{1}{p}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读图的程序框图,运行相应的程序,当输入x的值为-36时,输出x的值为(  )
A.0B.1C.3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120),历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.
(Ⅰ)请把频率分布直方图补充完整;
(Ⅱ)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角三角形△ABC中,$C=\frac{π}{2}$,$|{\overrightarrow{AC}}|=3$,对平面内的任意一点M,平面内有一点D使得$3\overrightarrow{MD}=\overrightarrow{MB}+2\overrightarrow{MA}$,则$\overrightarrow{CD}•\overrightarrow{CA}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\frac{f'(1)}{e}{e^x}+\frac{f(0)}{2}{x^2}-x$,若存在实数m使得不等式f(m)≤2n2-n成立,求实数n的取值范围为(  )
A.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$B.$({-∞,-1}]∪[{\frac{1}{2},+∞})$C.$({-∞,0}]∪[{\frac{1}{2},+∞})$D.$({-∞,-\frac{1}{2}}]∪[{0,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正实数x,y满足x+2y=1,则x•y的最大值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若存在实数x∈[1,+∞),使|x-a|+x-4≤0成立,则实数a的取值范围是[-2,4].

查看答案和解析>>

同步练习册答案