ÒÑÖªº¯Êýf£¨x£©=ax-lnx+1£¨a¡ÊR£©£¬g£¨x£©=xe1-x£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòT£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄ¼¯ºÏTÖеÄÔªËØt£¬ÔÚÇø¼ä[1£¬e]ÉÏ×Ü´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=t³ÉÁ¢¡¢Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3 £©º¯Êýf£¨x£©Í¼ÏóÉÏÊÇ·ñ´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£¿Çëд³öÅжϹý³Ì£®
·ÖÎö£º£¨1£©ÓÉg¡ä£¨x£©=e1-x-xe1-x=e1-x£¨1-x£©£¬Öªg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÓÉ´ËÄÜÇó³ög£¨x£©µÄÖµÓòT£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬Ô­ÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬ÓÉ´ËÄÜÍƵ¼³öÂú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
y1-y2
x1-x2
=
a(x1-x2)
x1-x2
=a-
lnx1-lnx2
x1-x2
£¬¶øf¡ä(x0) =f¡ä(
x1+x2
2
)
=a-
2
x1+x2
£¬ln
x1
x2
=
2(x1-x2)
x1+x2
=
2(
x1
x2
-1)
x1
x2
+1
£¬ÓÉ´ËÄÜÍƵ¼³öº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£®
½â´ð£º½â£º£¨1£©¡ßg¡ä£¨x£©=e1-x-xe1-x=e1-x£¨1-x£©£¬
¡àg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-e£¬
¡àg£¨x£©µÄÖµÓòTΪ£¨0£¬1]£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬
Ô­ÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬
¡ßf¡ä(x)=a-
1
x
£¬£¨1¡Üx¡Üe£©£¬
1
x
¡Ê[
1
e
£¬1]
£¬
µ±a¡Ý1ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒ⣮
µ±a¡Ü
1
e
ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣮
µ±1£¼
1
a
£¼e
£¬¼´
1
e
£¼a£¼1
ʱ£¬f£¨x£©ÔÚÇø¼ä[1£¬
1
a
]Éϵ¥µ÷µÝ¼õ£»f£¨x£©ÔÚÇø¼ä[
1
a
£¬e
]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê£¨
1
e
£¬1
£©£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0£¬
ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬
¶øÓÉf£¨x£©min=f£¨
1
a
£©=2+lna¡Ü0£¬
¿ÉµÃa¡Ü
1
e2
£¬Ôòa¡Ê∅£®
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
y1-y2
x1-x2
=
a(x1-x2)
x1-x2

=
a(x1-x2)-(lnx1-lnx2)
x1-x2

=a-
lnx1-lnx2
x1-x2
£¬
¶øf¡ä(x0) =f¡ä(
x1+x2
2
)
=a-
2
x1+x2
£¬
¹ÊÓÐ
lnx1-lnx2
x1-x2
=
2
x1+x2
£¬
¼´ln
x1
x2
=
2(x1-x2)
x1+x2
=
2(
x1
x2
-1)
x1
x2
+1
£¬
Áît=
x1
x2
¡Ê(0£¬1)
£¬
ÔòÉÏʽ»¯Îªlnt+
4
t+1
-2=0
£¬
ÁîF£¨t£©=lnt+
4
t+1
-2£¬
ÔòÓÉF¡ä(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)
£¾0£¬
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
4
t+1
-2=0
Î޽⣬
ËùÒÔº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬
ʹµÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄÖµÓòµÄÇ󷨣¬Ì½Ë÷ÊÇ·ñ´æÔÚÂú×ãÌõ¼þµÄʵÊý£¬Ì½Ë÷º¯ÊýͼÏóÉÏÂú×ãÌõ¼þµÄÁ½µãÊÇ·ñ´æÔÚ£®×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
a-x2
x
+lnx  (a¡ÊR £¬ x¡Ê[
1
2
 £¬ 2])

£¨1£©µ±a¡Ê[-2£¬
1
4
)
ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©Éèg£¨x£©=[f£¨x£©-lnx]•x2£¬kÊÇg£¨x£©Í¼ÏóÉϲ»Í¬Á½µãµÄÁ¬ÏßµÄбÂÊ£¬·ñ´æÔÚʵÊýa£¬Ê¹µÃk¡Ü1ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•º£µíÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=a-2xµÄͼÏó¹ýÔ­µã£¬Ôò²»µÈʽf(x)£¾
34
µÄ½â¼¯Îª
£¨-¡Þ£¬-2£©
£¨-¡Þ£¬-2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a|x|µÄͼÏó¾­¹ýµã£¨1£¬3£©£¬½â²»µÈʽf(
2x
)£¾3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a•2x+b•3x£¬ÆäÖг£Êýa£¬bÂú×ãa•b¡Ù0
£¨1£©Èôa•b£¾0£¬ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa=-3b£¬Çóf£¨x+1£©£¾f£¨x£©Ê±µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a-2|x|+1£¨a¡Ù0£©£¬¶¨Ò庯ÊýF£¨x£©=
f(x)   £¬  x£¾0
-f(x) £¬    x£¼0
 ¸ø³öÏÂÁÐÃüÌ⣺¢ÙF£¨x£©=|f£¨x£©|£» ¢Úº¯ÊýF£¨x£©ÊÇÆ溯Êý£»¢Ûµ±a£¼0ʱ£¬Èômn£¼0£¬m+n£¾0£¬×ÜÓÐF£¨m£©+F£¨n£©£¼0³ÉÁ¢£¬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸