·ÖÎö£º£¨1£©ÓÉg¡ä£¨x£©=e
1-x-xe
1-x=e
1-x£¨1-x£©£¬Öªg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÓÉ´ËÄÜÇó³ög£¨x£©µÄÖµÓòT£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬ÓÉ´ËÄÜÍƵ¼³öÂú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©k
AB=
=
=a-
£¬¶ø
f¡ä(x0) =
f¡ä()=a-
£¬
ln=
=
£¬ÓÉ´ËÄÜÍƵ¼³öº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x
1£¬y
1£©ºÍB£¨x
2£¬y
2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x
0£¬y
0£©´¦ÇÐÏßµÄбÂÊ£®
½â´ð£º½â£º£¨1£©¡ßg¡ä£¨x£©=e
1-x-xe
1-x=e
1-x£¨1-x£©£¬
¡àg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e
2-e£¬
¡àg£¨x£©µÄÖµÓòTΪ£¨0£¬1]£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬
ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬
¡ß
f¡ä(x)=a-£¬£¨1¡Üx¡Üe£©£¬
¡Ê[£¬1]£¬
µ±a¡Ý1ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒ⣮
µ±a
¡Üʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣮
µ±1£¼
£¼e£¬¼´
£¼a£¼1ʱ£¬f£¨x£©ÔÚÇø¼ä[1£¬
]Éϵ¥µ÷µÝ¼õ£»f£¨x£©ÔÚÇø¼ä[
£¬e]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê£¨
£¬1£©£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0£¬
ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬
¶øÓÉf£¨x£©
min=f£¨
£©=2+lna¡Ü0£¬
¿ÉµÃa
¡Ü£¬Ôòa¡Ê∅£®
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©k
AB=
=
=
a(x1-x2)-(lnx1-lnx2) |
x1-x2 |
=a-
£¬
¶ø
f¡ä(x0) =
f¡ä()=a-
£¬
¹ÊÓÐ
=
£¬
¼´
ln=
=
£¬
Áît=
¡Ê(0£¬1)£¬
ÔòÉÏʽ»¯Îª
lnt+-2=0£¬
ÁîF£¨t£©=lnt+
-2£¬
ÔòÓÉ
F¡ä(t)=-=
£¾0£¬
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
-2=0Î޽⣬
ËùÒÔº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x
1£¬y
1£©ºÍB£¨x
2£¬y
2£©£¬
ʹµÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x
0£¬y
0£©´¦ÇÐÏßµÄбÂÊ£®