精英家教网 > 高中数学 > 题目详情
2.求函数y=($\frac{1}{2}$)${\;}^{-{x}^{2}+2x}$的单调区间.

分析 令t=-x2+2x,则y=($\frac{1}{2}$)t,运用指数函数和二次函数的单调性和复合函数的单调性:同增异减,即可得到函数的单调区间.

解答 解:令t=-x2+2x,
则y=($\frac{1}{2}$)t,且在R上递减,
由于t=-x2+2x在(-∞,1]上递增,在[1,+∞)上递减,
则由复合函数的单调性,可得
函数y=($\frac{1}{2}$)${\;}^{-{x}^{2}+2x}$的单调递减区间为(-∞,1],单调递增区间为[1,+∞).

点评 本题考查复合函数的单调性:同增异减,考查二次函数和指数函数的单调性的运用,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在Rt△ABC中,∠B=30°,∠C=60°,AC=a,动点P,Q同时从A出发,沿周界运动,点P沿A→B→C;动点Q沿A→C→B运动到相遇时停止,它们的速度之比是1:3,点P走过的路程为x,△APQ的面积为y,写出y关于x的函数解析式,并求出定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过圆x2+y2=4内一点A(1,1)作一弦交圆于B、C两点,过点B、C作圆的切线PB、PC,则点P的轨迹方程是x+y=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{0}^{1}$(x-x2)dx=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是距离为6的两个定点,动点M满足|MF1|+|MF2|=6,则M点的轨迹是(  )
A.椭圆B.直线C.线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}是递增的等差数列,a1=f(x),a2=4,a3=f(x+2),其中f(x)=x2+2
(1)求数列{an}的前n项和Sn
(2)令bn=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$+…+$\sqrt{{S}_{n}}$,[x]表示不超过x的最大整数(例如,[2.1]=2)
①分别写出[2$\sqrt{{S}_{1}}$],[$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$]的值;
②令cn=[$\frac{2{b}_{n}}{n}$],求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$(ax+$\frac{1}{{a}^{x}}$),其中a>0,且a≠1.判断f(m+n)+f(m-n)与2f(m)f(n)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若椭圆$\frac{{x}^{2}}{3m+12}$-$\frac{{y}^{2}}{m}$=1的准线平行于y轴,则m的取值范围是-3<m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,点P为E上一动点,∠F1PF2=2θ.
(1)证明:当点P为短轴端点时∠F1PF2取最大值.
(2)若∠F1PF2=90°,求∠F1PF2的面积;
(3)求证:△F1PF2的面积S=b2tanθ.

查看答案和解析>>

同步练习册答案