精英家教网 > 高中数学 > 题目详情
3.若函数y=x3-2ax+a在(0,1)内无极值,则实数a的取值范围是(  )
A.[0,$\frac{3}{2}$]B.(-∞,0)C.(-∞,0]∪[$\frac{3}{2}$,+∞)D.[$\frac{3}{2}$,+∞)

分析 由函数y=x3-2ax+a在(0,1)内无极值,先对函数进行求导,导函数在(0,1)内没有实数根,从而求得实数a的取值范围.

解答 解:∵y=x3-2ax+a
∴y′=3x2-2a
∵函数y=x3-2ax+a在(0,1)内无极值
∴y′=3x2-2a=0在(0,1)内无实数根
∵0<x<1
∴-2a<3x2-2a<3-2a
∴-2a≥0或3-2a≤0
∴a≤0或a≥$\frac{3}{2}$
故选:C.

点评 本题考查利用导数研究函数的极值问题,体现了转化的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),所得图象关于直线x=$\frac{π}{4}$对称,则φ的最小值为(  )
A.$\frac{1}{8}π$B.$\frac{1}{2}π$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…,记第n个图形的边长an,周长为bn

(1)求数列{an},{bn}的通项公式;
(2)若第n个图形的面积为Sn,试探究Sn,Sn-1,(n≥2)满足的关系式,并证明:Sn<$\frac{2\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0,函数f(x)=$\frac{1}{3}$a2x3-ax2+$\frac{2}{3}$,判断函数f(x)在[-1,1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某农科院对春季昼夜温差大小与某早稻新品种发芽多少之间的关系进行分析研究,他们分别记录了2月1日至2月6日的每天昼夜温差与实验室每天200颗种子的发芽数,得到如下资料:
日期2月1日2月2日2月3日2月4日2月5日 2月6日
温差x(℃)9107812 13
发芽数y(颗)2326172127 30
该农科院确定的研究方案是:先从这五组数据中取出2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是2月3日与2月5日的两组数据,请根据余下四组数据,求出y对x的线性回归方程$\widehat{y}$=bx+a(精确到0.1);
(3)把取出的2组数据代入(2)中所求的回归方程,若|yi-$\widehat{{y}_{i}}$|(其中yi为i日的发芽数,$\widehat{{y}_{i}}$为i日根据(2)中回归方程得到的发芽数)的值都不大于2,则认为回归方程符合要求,问(2)中回归方程是否符合要求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知l为抛物线y2=2px(p>0)的准线,AB为过焦点F的弦,M为AB中点,过M作直线L的垂线,垂足为N交抛物线于点P,求证:P点平分MN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知曲线C:y=x2,则曲线C上横坐标为1的点处的切线方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinθ=-$\frac{3}{5}$,且θ∈($π,\frac{3π}{2}$),则$\frac{sin2θ}{co{s}^{2}θ}$的值等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=log2(x2-1)的单调递减区间是(-∞,-1).

查看答案和解析>>

同步练习册答案