【题目】如图,在三棱锥
中,
底面
,
为
的中点,
.
![]()
(1)求证:
平面
;
(2)求点
到平面
的距离.
【答案】(1)证明过程详见解析;(2)点
到平面
的距离为
.
【解析】
试题本题以三棱锥为几何背景考查线面垂直的判断和点到面的距离的求法,可以运用传统几何法求解,突出考查空间想象能力和计算能力.第一问,先利用线面垂直
平面
,得到线线垂直
,由等腰三角形,得
,由上述两个条件得
平面
;第二问,利用第一问可得面
面
,利用面面垂直的性质,得
到
的距离即为
到面
的距离,在直角三角形
中,用等面积法表示
.法二:第二问,等体积法求点面距离,
,即
,得
.
试题解析:(1)因为
平面
,
平面
,
所以![]()
又因为在
中,
,
为
的中点,
所以![]()
又
平面
,
平面
,且
,
所以
平面![]()
(2)法一:因为
平面
且
平面![]()
所以平面![]()
平面
,
又因为平面![]()
平面![]()
,
所以点
到
的距离
即为点
到平面
的距离,
在直角三角形
中,由![]()
得![]()
所以点
到平面
的距离为
.
法二:设点
到平面
的距离为
, 据![]()
即
,得![]()
所以点
到平面
的距离为
.
科目:高中数学 来源: 题型:
【题目】某商贸公司售卖某种水果.经市场调研可知:在未来
天内,这种水果每箱的销售利润
(单位:元)与时间
,单位:天)之间的函数关系式为
, 且日销售量
(单位:箱)与时间
之间的函数关系式为![]()
①第
天的销售利润为__________元;
②在未来的这
天中,公司决定每销售
箱该水果就捐赠
元给 “精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间
的增大而增大,则
的最小值是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图像过点
和
.
(1)求函数
的解析式;
(2)若
在
上有解,求
的最小值;
(3)记
,
,是否存在正数
,使得
对一切
均成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),它与曲线
C:(y-2)2-x2=1交于A、B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为
,求点P到线段AB中点M的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰
中,
,
,
分别为
,
的中点,
为
的中点,
在线段
上,且
。将
沿
折起,使点
到
的位置(如图2所示),且
。
![]()
(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在地上有同样大小的 5 块积木,一堆 2 个,一堆 3 个,要把积木一块一块的全部放到某个盒子里,每次 只能取出其中一堆最上面的一块,则不同的取法有______种(用数字作答).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)的图象与
轴交点的横坐标构成一个公差为
的等差数列,把函数
的图象沿
轴向左平移
个单位,纵坐标扩大到原来的2倍得到函数
的图象,则下列关于函数
的命题中正确的是( )
A.函数
是奇函数B.
的图象关于直线
对称
C.
在
上是增函数D.当
时,函数
的值域是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:![]()
的焦距为2,且过点
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
,
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程:若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com