精英家教网 > 高中数学 > 题目详情
已知{an}是递增的等差数列,a1=2,Sn为其前n项和,若a1,a2,a6成等比数列,则S5=
 
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:利用a1,a2,a6成等比数列,建立方程,结合{an}是递增的等差数列,求出公差,利用等差数列的求和公式,即可得出结论.
解答: 解:因为{an}是递增的等差数列,所以公差大于0;
由a1,a2,a6成等比数列,
a
2
2
=a1a6,(2+d)2=2(2+5d),d=6,S5=5×2+
5×4
2
×6=70

故答案为:70.
点评:本题考查等比数列的性质,等差数列的求和公式,求出公差是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(ax+1)5的展开式中x3的系数是10,则实数a的值是(  )
A、1
B、
1
2
C、-1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角三角形ABC中,a,b,c分别为角A,B,C的对边,a2+b2-6abcosC=0,且sin2C=2sinAsinB.(1)求角C的值;
(2)设函数f(x)=cos(ωx-
3
)-cosωx(ω>0),且f(x)两个相邻的最低点之间的距离为
π
2
,求f(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx•sin(
6
-x).
(Ⅰ)求f(
π
3
)的值;
(Ⅱ)求使4f(x)<1成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an},已知它的前n项积为Tn,若T10=9T6,则a5•a12的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
,x>0
cosx,x≤0
,则f′(1)f(0)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x-aex(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2
(Ⅰ)求a的取值范围;
(Ⅱ)证明:
x2
x1
随着a的减小而增大;
(Ⅲ)证明x1+x2随着a的减小而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),点P是抛物线y2=x上任意一点,则|AP|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得满足:f(x)在[a,b]上是单调函数且在[a,b]上的值域为[2a,2b],则称区间[a,b]为函数f(x)的“和谐区间”.下列函数中存在“和谐区间”的是
 

①f(x)=x3(x∈R)
②f(x)=
1
x
(x∈R,x≠0)
③f(x)=
4x
x2+1
(x∈R)
④f(x)=ex(x∈R)
⑤f(x)=lg|x|+2(x∈R,x≠0)

查看答案和解析>>

同步练习册答案