精英家教网 > 高中数学 > 题目详情
如图所示,△ABC为正三角形,EC⊥底面ABC,BDCE,且CE=CA=2BD,M是EA的中点,
求证:(1)DE=DA;
(2)面BDM⊥面ECA.
证明:(1)取AC中点N,连接MN、BN,
∵△ABC是正三角形,
∴BN⊥AC,
∵EC⊥平面ABC,BD⊥平面ABC,
∴ECBD,EC⊥BN,
又∵M为AE中点,EC=2BD,
∴MN
.
.
BD,∴BN
.
.
DM,
∴四边形MNBD是平行四边形,
因为BN⊥AC,BN⊥EC,
所以BN⊥平面AEC,
∴DM⊥平面AEC,
∴DM⊥AE,
∴AD=DE.
(2)∵DM⊥平面AEC,DM?平面BDM,
∴平面BDM⊥平面AEC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得几何体B-ACD
(Ⅰ)求证:AC⊥平面BCD;
(Ⅱ)求点D到面ABC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DC⊥平面ABC,EADC,AB=AC=AE=
1
2
DC,M为BD的中点.
(Ⅰ)求证:EM平面ABC;
(Ⅱ)求证:平面AEM⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求证:平面AB1C⊥平面B1CB;
(2)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当点D运动到线段AB的中点时,求二面角D-CO-B的大小;
(Ⅲ)当CD与平面AOB所成角最大时,求三棱锥C-OBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥S-ABCD中,已知ABCD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:ABl.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A(1,2,-1)关于面xOy的对称点为B,而B关于x轴的对称点为C,则
BC
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一地球仪的球心为空间直角坐标系的原点,球面上有两个点的坐标分别为,则(      )
A.18B.12C.D.

查看答案和解析>>

同步练习册答案