精英家教网 > 高中数学 > 题目详情
18.已知$α∈(\frac{π}{2},π)$,且1+tanα≥0,则角α的取值范围是[$\frac{3π}{4}$,π).

分析 根据1+tanα≥0求出-$\frac{π}{4}$+kπ≤α<$\frac{π}{2}$+kπ,k∈Z;再根据α∈($\frac{π}{2}$,π)求出α的取值范围.

解答 解:1+tanα≥0,
∴tanα≥-1,
解得-$\frac{π}{4}$+kπ≤α<$\frac{π}{2}$+kπ,k∈Z;
又α∈($\frac{π}{2}$,π),
∴取$\frac{3π}{4}$≤α<π,
即α的取值范围是[$\frac{3π}{4}$,π).
故答案为:[$\frac{3π}{4}$,π).

点评 本题考查了正切函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex(sinx+cosx).
(1)如果对于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求实数k的取值范围;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],过点M($\frac{π-1}{2}$,0)作函数f(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某电商在6月18日之后,随机抽取100名顾客进行回访,按顾客的年龄分成6组,得到如下频数分布表:
 顾客年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 频数 4 24 32 20 16 4
(1)在表中作出这些数据的频率分布直方图;
(2)根据(1)中的频率分布直方图,求这100名顾客年龄的平均数;
(3)用分层抽样的方法从这100名顾客中抽取25人,再从抽取的25人中随机抽取2人,求年龄在[25,35)内的顾客人数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{an}的通项公式${a_n}=\frac{1}{{{{(n+1)}^2}}}(n∈{N^*})$,记f(n)=(1-a1)(1-a2)…(1-an
(1)计算f(1),f(2),f(3)的值;
(2)由(1)猜想f(n),并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}中,前n项和为Sn,a1a9=2a3a6,S5=-62,则a1的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:C30+C41+C52+…+C1613=2380.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若Sn等差数列{an}的前n项和,且a3=2,a8=10,则S10=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x3-3x,函数f(x)的图象在x=0处的切线方程是y=-3x;函数f(x)在区间[0,2]内的值域是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y是正数,且$\frac{1}{x}+\frac{9}{y}=1$,则x+y的最小值是(  )
A.6B.12C.16D.24

查看答案和解析>>

同步练习册答案