精英家教网 > 高中数学 > 题目详情
13.等比数列{an}中,前n项和为Sn,a1a9=2a3a6,S5=-62,则a1的值为-2.

分析 由等比数列的性质和已知可得公比q,代入求和公式可得a1

解答 解:由等比数列的性质可得a1a9=a52,a3a6=a4a5
∵a1a9=2a3a6,∴a52=2a4a5,解得a5=2a4
∴$\frac{{a}_{5}}{{a}_{4}}$=2,即等比数列{an}的公比q=2,
∵S5=$\frac{{a}_{1}(1-{2}^{5})}{1-2}$=31a1=-62,
∴a1=-2,
故答案为-2.

点评 本题考查等比数列的性质,求出公比是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA=AB=$\frac{1}{2}$AD=2,PB=2$\sqrt{2}$,PA⊥AD,底面ABCD为平行四边形,∠ADC=60°,E为PD的中点.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)求多面体PABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知p:x>1,q:(x-2)(x-a)<0(a≠2),若a=3,则p是q的必要不充分条件;若p既不是q的充分条件,也不是q必要条件,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.满足$\left\{\begin{array}{l}{3x-y+2≥0}\\{3x+2y-4≤0}\\{y+1≥0}\end{array}\right.$,则z=x2+y2-4x-2y的取值范围是-$\frac{29}{13}$≤z≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线$y=\frac{1}{2}$的倾斜角为α,则α(  )
A.等于0B.等于$\frac{π}{6}$C.等于$\frac{π}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$α∈(\frac{π}{2},π)$,且1+tanα≥0,则角α的取值范围是[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈[-$\frac{\sqrt{3}}{3}$-1,$\sqrt{3}$-1],求直线AB的倾斜角α的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读右边的程序框图,运行相应的程序,则输出的S值为(  )
A.3B.5C.9D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若复数z=(a-2i)2+8•i2017(a∈R)为纯虚数,则a=-2.

查看答案和解析>>

同步练习册答案