精英家教网 > 高中数学 > 题目详情
5.已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈[-$\frac{\sqrt{3}}{3}$-1,$\sqrt{3}$-1],求直线AB的倾斜角α的范围.

分析 (1)根据斜率公式计算即可,
(2)当m=-1时,直线的斜率不存在,写出直线的方程;当m≠-1时,由两点式求直线的方程.
(3)已知实数m∈[-$\frac{\sqrt{3}}{3}$-1,$\sqrt{3}$-1],利用不等式的性质求出斜率α的范围,再利用正切函数的单调性求出倾斜角α的范围.

解答 解:(1)当m=-1时,直线AB的斜率不存在;
当m≠-1时,k=$\frac{1}{m+1}$.
(2)当m=-1时,AB的方程为x=-1,
当m≠-1时,AB的方程为y-2=$\frac{1}{m+1}$(x+1).
(3)①当m=-1时,α=$\frac{π}{2}$;
②当m≠-1时,∵k=$\frac{1}{m+1}$∈(-∞,-$\sqrt{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞),
∴α∈[$\frac{π}{6}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$].
综合①②,知直线AB的倾斜角α∈[$\frac{π}{6}$,$\frac{2π}{3}$].

点评 本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,以及用两点式求直线的方程,体现了分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设数列{an}满足${a_1}=\frac{3}{8}$,且对任意的n∈N*,满足${a_{n+2}}-{a_n}≤{3^n},{a_{n+4}}-{a_n}≥10×{3^n}$,则a2017=$\frac{{{3^{2017}}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:不等式|m-1|≤$\sqrt{{a^2}+4}$对于$a∈[{-2,\sqrt{5}}]$恒成立,q:x2+mx+m<0有解,若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}中,前n项和为Sn,a1a9=2a3a6,S5=-62,则a1的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线${x^2}-\frac{y^2}{3}=1$,过P(2,0)且倾斜角为30°的直线l与双曲线相交于A,B两点
(1)写出直线l的参数方程.
(2)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若Sn等差数列{an}的前n项和,且a3=2,a8=10,则S10=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=ac,b=$\sqrt{3}$,则2a+c的取值范围是($\sqrt{3}$,2$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${({xy-\frac{1}{x}})^8}$的二项式中不含x的项的系数为70.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知Sn=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,n∈N*,利用数学归纳法证明不等式Sn>$\frac{13}{24}$的过程中,从n=k到n=k+l(k∈N*)时,不等式的左边Sk+1=Sk+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.

查看答案和解析>>

同步练习册答案