(2014·孝感模拟)已知下列结论:
①若a=b,b=c,则a=c;
②若a∥b,b∥c,则a∥c;
③|a·b|=|a|·|b|;
④若a·b=a·c,则b=c的逆命题.
其中正确的是( )
A.①② B.①④ C.①②③ D.①②④
科目:高中数学 来源:2014年高考数学考前复习冲刺穿插滚动练习(二)(解析版) 题型:选择题
某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为
天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )
A.60件 B.80件 C.100件 D.120件
查看答案和解析>>
科目:高中数学 来源:2014年高考数学考前复习冲刺穿插滚动练习(一)(解析版) 题型:选择题
设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=(
)x-1,则f(
),f(
),f(
)的大小关系是 ( )
A.f(
)>f(
)>f(
)
B.f(
)>f(
)>f(
)
C.f(
)>f(
)>f(
)
D.f(
)>f(
)>f(
)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第四章平面向量、数系扩充与复数引入(解析版) 题型:填空题
已知向量a=(1,3),b=(-2,-6),|c|=
,若(a+b)·c=5,则a与c的夹角为__________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第四章平面向量、数系扩充与复数引入(解析版) 题型:选择题
下面是关于复数z=
+
的四个命题:
p1:|z|=2;p2:z2=4i;p3:
=2i;p4:z的虚部是0,其中的真命题为( )
A.p1,p2 B.p1,p3 C.p2,p3 D.p3,p4
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第十章 算法初步、统计、统计案例(解析版) 题型:解答题
(2014·泰安模拟)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
锻炼时间 (分钟) | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120) |
人数 | 40 | 60 | 80 | 100 | 80 | 40 |
现采用分层抽样的方法抽取容量为20的样本.
(1)其中课外体育锻炼时间在
分钟内的学生应抽取多少人?
(2)若从(1)中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在
分钟内的概率.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第十章 算法初步、统计、统计案例(解析版) 题型:填空题
(2014·天门模拟)在区间[0,4]内随机取两个数a,b,则使得函数f(x)=x2+ax+b2有零点的概率为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第六章 不等式、推理与证明(解析版) 题型:填空题
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f′′(x)是函数y=f(x)的导数f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有′拐点′;任何一个三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一发现作为条件,则函数f(x)=x3-3x2+3x的对称中心为__________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学人教版评估检测 第五章 数列(解析版) 题型:解答题
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通项公式.
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com