精英家教网 > 高中数学 > 题目详情
已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1的中心,焦点与该椭圆的右焦点重合
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物D于A,B两点,坐标原点O为PQPQ中点,求证∠AQP=∠BQP.
考点:直线与圆锥曲线的关系,抛物线的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意,设抛物线方程为y2=2px(p>0).由a2-b2=4-3=1,得c=1.由此能求出抛物线D的方程.
(2)设A(x1,y1),B(x2,y2),由于O为PQ之中点,故当l⊥x轴时由抛物线的对称性知∠AQP=∠BQP,当l不垂直x轴时,设l:y=k(x-4),代入抛物线方程,得k2x2-4(2k2+1)x+16k2=0,由此能够证明∠AQP=∠BQP.
解答: (1)解:由题意,可设抛物线方程为y2=2px(p>0).
由a2-b2=4-3=1,得c=1.
∴抛物线的焦点为(1,0),∴p=2.
∴抛物线D的方程为y2=4x.…
(2)证明:设A(x1,y1),B(x2,y2),
由于O为PQ之中点,故当l⊥x轴时,由抛物线的对称性知,一定有∠AQP=∠BQP,
当l不垂直x轴时,设l:y=k(x-4),
代入抛物线方程,得k2x2-4(2k2+1)x+16k2=0,
∴x1+x2=
4(2k2+1)
k2
,x1x2=16,
∵kAQ=
y1
x1+4
,kBQ=
y2
x2+4

∴kAQ+kBQ=
k(2x1x2-32)
(x1+4)(x2+4)
=0,
∴∠AQP=∠BQP.
综上证知,∠AQP=∠BQP.
点评:本题考查抛物线方程的求法,直线和抛物线的位置关系,考查运算求解能力,推理论证能力;考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3(a+1)x2+6ax(a∈R).
(1)若函数f(x)在(-∞,+∞)上单调递增,求实数a的取值集合;
(2)当x∈[1,3]时,f(x)的最小值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(-
2
,1),长轴长为2
5
,过点C(-1,0)且斜率为k的直线l与椭圆相交于不同的两点A、B.
(1)求椭圆的方程;
(2)若线段AB中点的横坐标是-
1
2
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2离心率e=
3
3
,过点F1且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(1)求椭圆的方程;
(2)过点(0,
2
)且斜率为k的直线l与椭圆相交于A、B两点,且△AF1F2与△BF1F2的面积之和为
3
2
2
,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,f(x)=xln(x+a)(x>0),g(x)=
2f(x)+a
x

(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)当a=2时,?x0∈90,+∞),使f(x0)=bx0-1成立,求实数b的取值范围;
(Ⅲ)若关于x的不等式g(x)≤1+ln(3a+1)在(0,+∞)有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x2+6x+14
x+1
(x>-1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,0),向量
b
与向量
b
-
a
的夹角为
π
6
,则|
b
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1•a3=2a2,Sn是等差数列{bn}的前n项和,且b3=a2,则S5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(2+x)n的展开式中,前三项的系数依次成等差数列,则展开式的第8项的系数为
 
.(用数字表示)

查看答案和解析>>

同步练习册答案