【题目】已知圆,一动圆与直线相切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)过作直线,交(1)中轨迹于两点,若中点的纵坐标为,求直线的方程.
【答案】(1);(2).
【解析】
(1)利用直接法,求动圆圆心P的轨迹T的方程;
(2)法一:由(1)得抛物线E的焦点C(1,0)设A,B两点的坐标分别为A(x1,y1),B(x2,y2),利用点差法,求出线段AB中点的纵坐标,得到直线的斜率,求出直线方程.
法二:设直线l的方程为x=my+1,联立直线与抛物线方程,设A,B两点的坐标分别为A(x1,y1),B(x2,y2),通过韦达定理,求出m即可.
(1)设P(x,y),则由题意,|PC|﹣(x),
∴x+1,
化简可得动圆圆心P的轨迹E的方程为y2=4x;
(2)法一:由(1)得抛物线E的方程为y2=4x,焦点C(1,0)
设A,B两点的坐标分别为A(x1,y1),B(x2,y2),
则
两式相减.整理得
∵线段AB中点的纵坐标为﹣1
∴直线l的斜率
直线l的方程为y﹣0=﹣2(x﹣1)即2x+y﹣2=0.
法二:由(1)得抛物线E的方程为y2=4x,焦点C(1,0)
设直线l的方程为x=my+1
由消去x,得y2﹣4my﹣4=0
设A,B两点的坐标分别为A(x1,y1),B(x2,y2),
∵线段AB中点的纵坐标为﹣1
∴
解得
直线l的方程为即2x+y﹣2=0.
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.
(1)求椭圆的方程及离心率的值;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出100名交易者,并对其交易评价进行了统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的有40人.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对服务满意与对商品满意之间有关”?
对服务满意 | 对服务不满意 | 合计 | |
对商品满意 | |||
对商品不满意 | |||
合计 |
(2)若对商品和服务都不满意者的集合为.已知中有2名男性,现从中任取2人调查其意见.求取到的2人恰好是一男一女的概率.
附: (其中为样本容量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,直线:.
(1)求直线所过定点的坐标;
(2)求直线被圆所截得的弦长最短时的值;
(3)已知点,在直线(为圆心)上存在定点(异于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标及该常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com