精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,,点中点.

1)求证:平面

2)求证:平面

3)求二面角的余弦值.

【答案】1)详见解析;(2)详见解析;(3

【解析】

1)由等腰三角形和直棱柱的性质,得出,根据线面垂直的判定定理,即可证出平面

2)连接,交于点,连接,结合三角形的中位线得出,根据线面平行的判定定理,即可证出平面

3)连,交于点,分别取中点,连接,根据线面垂直的判定定理,可证出平面平面,从而得出就是二面角的平面角,最后利用几何法求出二面角的余弦值.

解:(1)证明:中点,

在直三棱柱中,平面平面

平面平面

平面

2)证明:连接,交于点,连接

分别是的中点,

的中位线,

平面平面

平面

3)解:连,交于点,分别取中点,连接

四边形是正方形且分别是的中点,故

中,

分别是中点且

在直三棱柱中,平面ABC平面ABC

平面平面

平面

平面平面

平面平面

平面

平面

平面平面

就是二面角的平面角,

,则在中,

即二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).

1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.

2)如果有触礁的危险,这艘海轮在处改变航向为东偏南方向航行,求的最小值.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.

(1)求证:BD∥平面FGH;

(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45° ,求平面FGH与平面ACFD所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=g(x)=f(x)+x-6lnx,其中R.

(1)=1,判断f(x)的单调性;

(2)=2,求出g(x)在(0,1)上的最大值;

(3)设函数=2,总有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,一动圆与直线相切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)过作直线,交(1)中轨迹两点,若中点的纵坐标为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个条件中任选一个补充在下面问题中,并加以解答.

已知的内角ABC的对边分别为abc,若______,求的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

同步练习册答案