精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{{x}^{2}}{2}$+ax+2lnx(a∈R)有一个极值点为x=1.
(1)求函数f(x)的单调区间和极值;
(2)设函数F(x)=f(x)+f(2x),当t∈[$\frac{3}{4}$,1]时,比较F(t)与F(1)的大小.(参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

分析 (1)求导,函数有一个极值点为x=1,得f'(1)=0,求出a值,利用导数判断函数的单调区间和极值;
(2)整理F(x)=f(x)+f(2x)=$\frac{5{x}^{2}}{2}-9x+4lnx+2ln2$,求导,利用导数判断函数单调性,利用单调性比较F(t)与F(1)的大小.

解答 解:(1)f'(x)=$\frac{{x}^{2}+ax+2}{{x}^{2}}$
∵函数有一个极值点为x=1,
∴f'(1)=0
∴a=-3
∴f'(x)=$\frac{(x-2)(x-1)}{{x}^{2}}$
∴当x∈(0,1)和(2,+∞)时,f'(x)>0,f(x)递增;
当x∈(1,2)时,f'(x)<0,f(x)递减
故函数的增区间为(0,1)和(2,+∞),减区间为(1,2);
极大值为f(1)=-$\frac{5}{2}$,极小值为f(2)=-4+2ln2;
(2)F(x)=f(x)+f(2x)=$\frac{5{x}^{2}}{2}-9x+4lnx+2ln2$
F'(x)=$\frac{(x-1)(5x-4)}{{x}^{2}}$
可知函数在(0,$\frac{4}{5}$)递增,在($\frac{4}{5}$,1)递减
∴当t∈[$\frac{4}{5}$,1]时,F(t)>F(1)
∵F($\frac{3}{4}$)≈-5.1,F(1)≈-5.1
∴当t∈[$\frac{3}{4}$,$\frac{4}{5}$]时,F(t)≥F(1)
故当t∈[$\frac{3}{4}$,1]时,必有F(t)≥F(1).

点评 考察了极值点的定义和利用导数求函数单调性和函数极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,正方体ABCD-A1B1C1D1中,E、F分别是A1D1、A1C1的中点,求:
(1)异面直线AE与CF所成角的余弦值;
(2)二面角C-AF-E的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x-[x],其中[x]表示不超过实数x的最大整数,若函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是(  )
A.(-1,-$\frac{1}{3}$]B.[$\frac{1}{5}$,$\frac{1}{3}$)C.(-$\frac{1}{3}$,-$\frac{1}{2}$]∪[$\frac{1}{5}$,$\frac{1}{4}$)D.[$\frac{1}{4}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b,c∈R+,且abc=1,求证:$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b,c∈R+,求证:2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x1、x2、…、x2015是正数,且x1x2…x2015=1,则(1+x1)(1+x2)…(1+x2015)的最小值是22015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平移坐标轴,化简曲线方程x2+y2-2x+12y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,A=60°,BC=2,则△ABC的面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直角三角形ABC,其三边分为a,b,c,(a>b>c).分别以三角形的a边,b边,c边所在直线为轴旋转一周形成三个几何体,其体积分别为V1,V2,V3,则它们的关系为(  )
A.V1>V2>V3B.V1<V2<V3C.V1=V2<V3D.V1<V2=V3

查看答案和解析>>

同步练习册答案