精英家教网 > 高中数学 > 题目详情
5.在以O为极点,x轴的正半轴为极轴,且单位长度相同的极坐标系中,已知直线l1的极坐标方程为ρsinθ+ρcosθ=1,直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ=R).
(1)将直线l1,l2化为直角坐标方程;
(2)求两直线l1与l2交点的极坐标.

分析 (1)直线l1的极坐标方程为ρsinθ+ρcosθ=1,利用互化公式化为直角坐标方程.直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ=R),利用互化公式可得直角坐标方程.
(2)把θ=$\frac{π}{3}$(ρ=R),代入直线l1的极坐标方程为ρsin$\frac{π}{3}$+ρcos$\frac{π}{3}$=1,化简可得ρ.即可得出两直线l1与l2交点的极坐标.

解答 解:(1)直线l1的极坐标方程为ρsinθ+ρcosθ=1,化为:直角坐标方程:y+x-1=0.
直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ=R),可得直角坐标方程:y=$\sqrt{3}$x,即$\sqrt{3}$x-y=0.
(2)把θ=$\frac{π}{3}$(ρ=R),代入直线l1的极坐标方程为ρsin$\frac{π}{3}$+ρcos$\frac{π}{3}$=1,化为$ρ=\sqrt{3}$-1.
∴两直线l1与l2交点的极坐标为:$(\sqrt{3}-1,\frac{π}{3})$.

点评 本题考查了极坐标方程化为直角坐标方程、极坐标方程的应用、直线的交点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3sinωxcosωx-$\sqrt{3}$cos2ωx+2sin2(ωx-$\frac{π}{12}$)+$\frac{{\sqrt{3}}}{2}$,(ω>0)的最小正周期为π.
(1)求f(x)的递增区间.
(2)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=1,b=$\sqrt{2}$,f(A)=1,求∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2=16的圆心为P,点Q(a,b)在圆P外,以PQ为直径作圆M与圆P相交于A,B两点.
(1)试确定直线QA,QB与圆P的位置关系,若QA=QB=3,写出点Q所在曲线的方程;
(2)若a=4,b=6,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=(x-3)ex的单调增区间是(  )
A.(-∞,2)B.(2,+∞)C.(1,4)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数式f(n)表示n2+1(n∈N*)的各位上的数字之和,
如142+1=197,1+9+7=17所以f(14)=17,
记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*
则f2010(17)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{3}{2}$x2-lnx的极值点为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若定义在R上的可导函数f(x)的导函数为f′(x),在R上满足f′(x)>f(x),且y=f(x-3)为奇函数,f(-6)=-3,则不等式f(x)<3ex的解集为(  )
A.(0,+∞)B.(-3,+∞)C.(-∞,0)D.(-∞,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图,A0(x0,y0)的坐标以已知条件为准),Sn表示青蛙从点A0到点An所经过的路程.
(1)点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p;
(2)若点An(xn,yn)(n∈N*)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且A0($\frac{1}{2}$,$\frac{1}{2}$),试写出$\lim_{n→+∞}$Sn(不需证明);
(3)若点An(xn,yn)要么落在y=${2^{\sqrt{1+8x}-1}}$所表示的曲线上,要么落在y=${2^{\sqrt{1+8x}+1}}$所表示的曲线上,并且A0(0,4),求S2011的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的动点,四边形ABCD是扇形的内接矩形,记∠COP=α,矩形的面积为S;
(1)求出S与α的函数关系式,并指出α的取值范围;
(2)求S最大值.

查看答案和解析>>

同步练习册答案