精英家教网 > 高中数学 > 题目详情
设a=log32,b=log 
1
3
2
3
,c=log31,则a,b,c大小关系是
 
考点:对数值大小的比较
专题:函数的性质及应用
分析:利用对数函数的单调性求解.
解答: 解:∵a=log32=log
1
3
1
2
log
1
3
2
3
=b,
0=log
1
3
1
<b=log 
1
3
2
3
log
1
3
1
3
1,
c=log31=0,
∴a>b>c.
点评:本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数的单调性的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={-1,1,2},B={a+1,a2+3},A∩B={2},则实数a的值为(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆F1:x2+(y+2)2=
121
4
内切,与圆F2:x2+(y-2)2=
1
4
外切,记动圆圆心点P的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)若直线l过点F2且与轨迹E相交于P、Q两点.
(i)设点M(0,m),问:是否存在实数m,使得直线l绕点F2无论怎样转动,都有
MP
MQ
=0成立?若存在,求出实数m的值;若不存在,请说明理由;
(ii)设△F1PQ的内切圆半径为r,求r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.
(1)求an与k;
(2)若数列{bn}满足b1=2,bn-bn-1=2 an(n≥2),求bn

查看答案和解析>>

科目:高中数学 来源: 题型:

为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
cos2ωx+sinωxcosωx+a,(ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
π
6

(Ⅰ)求ω的值及对称轴方程:
(Ⅱ)如果f(x)在区间[-
π
3
6
]上的最小值为
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足a1=
2
3
,an+1=
2an
an+2
,b1+2b2+22b3+…+2n-1bn=n(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设数列{
bn
an
}的前n项和Tn,问是否存在正整数m、M,且M-n=3,使得m<Tn<M对一切n∈N*恒成立?若存在,求出m、M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x2-2x+3
x2-x+1
,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x(x-2).
(1)求函数f(x)在R上的解析式;
(2)当a取何值时,方程f(x)=a在R上有两个解?

查看答案和解析>>

同步练习册答案