精英家教网 > 高中数学 > 题目详情
2.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,求$\sqrt{2}$a+b的取值范围.

分析 曲线a|x|+b|y|=1(a≥0,b≥0),对x,y分类讨论.画出图象:表示菱形ABCD.由$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,即$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$≤2$\sqrt{2}$.设M(-1,0),N(1,0),可得:2|PM|≤2$\sqrt{2}$,|BD|≤2$\sqrt{2}$,解出即可.

解答 解:曲线a|x|+b|y|=1(a≥0,b≥0),
当x,y≥0时,化为ax+by=1;当x≥0,y≤0时,化为ax-by=1;
当x≤0,y≥0时,化为-ax+by=1;当x≤0,y≤0时,
化为-ax-by=1.画出图象:表示菱形ABCD.
由$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,
即$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$≤2$\sqrt{2}$.
设M(-1,0),N(1,0),
则2|PM|≤2$\sqrt{2}$,|BD|≤2$\sqrt{2}$,
∴$\sqrt{1+\frac{1}{{b}^{2}}}$≤$\sqrt{2}$,$\frac{2}{a}$≤2$\sqrt{2}$,
解得b≥1,$\sqrt{2}$a≥1,
∴$\sqrt{2}$a+b≥1+1=2.
∴$\sqrt{2}$a+b取值范围为[2,+∞).

点评 本题考查了直线方程、分类讨论思想方法、两点之间的距离公式,考查了数形结合思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知1<a<2,则下列各数中,最大的是(  )
A.log2aB.log2(log2a)C.(log2a)2D.log2$\sqrt{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC顶点A(2,-7),AB边上的高CF所在直线的方程为:3x+y+11=0,AC边上的中线BE所在直线的方程为:x+2y+7=0,求△ABC三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知cosα=-$\frac{4}{5}$,sinα=$\frac{3}{5}$,那么2α的终边所在的象限为第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z=2x+y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,0),M(1+cos2x,1),N(2,$\sqrt{3}$sin2x+2m),x∈R,m∈R,m是常数,且y=$\overrightarrow{AM}•\overrightarrow{AN}$.
(1)求y=f(x)的解析式;
(2)若x∈[0,$\frac{π}{2}$],且f(x)的最小值为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线x-ky+1=0与圆x2+y2=1的位置关系是相交或相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2$\frac{a+x}{1-x}$.
(1)求函数的定义域;
(2)若f(x)为奇函数,求a的值,并判断函数的单调性;
(3)在(2)的条件下,若f(1-m)+f(1-m2)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设A={递增等比数列的公比},B={递减等比数列的公比},则A∪B=(  )
A.(-∞,+∞)B.(1,+∞)C.(0,1)∪(1,+∞)D.

查看答案和解析>>

同步练习册答案