精英家教网 > 高中数学 > 题目详情
5.已知tanx=-$\frac{1}{2}$,则2sinxcosx=(  )
A.-$\frac{4}{5}$B.-3C.-$\frac{7}{5}$D.-$\frac{11}{5}$

分析 由条件利用同角三角函数的基本关系,求得2sinxcosx的值.

解答 解:∵tanx=-$\frac{1}{2}$,
∴2sinxcosx=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{1+ta{n}^{2}x}$=-$\frac{4}{5}$.
故选:A.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若f(x)在x=1处取得极值,讨论函数f(x)的单调性;
(II)当a=1时,设函数φ(x)=f(x)-x2有两个零点x1,x2
(i)求b的取值范围;
(ii)证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知四棱锥S-ABCD的底面为平行四边形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M、N分别为SB、SC中点,过MN作平面MNPQ分别与线段CD、AB相交于点P、Q.
(Ⅰ)在图中作出平面MNPQ使面MNPQ‖面SAD(不要求证明);
( II)若$|{\overrightarrow{AB}}|=4$,在(Ⅰ)的条件下求多面体MNCBPQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P(x,y)为区域$\left\{\begin{array}{l}{y^2}-4{x^2}≤0\\ a≤x≤0\end{array}\right.$内的任意一点,当该区域的面积为4时,z=x-2y的最小值是(  )
A.$-5\sqrt{2}$B.$-3\sqrt{2}$C.$-\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(a-1)lnx+$\frac{1}{2}{x^2}$-ax(a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=lnx+f(x),若g(x)有两个极值点x1,x2,且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的不等式|x-a|<b的解集为{x|2<x<4}.
(Ⅰ)求实数a,b的值;
(Ⅱ)设实数x,y,z 满足$\frac{(x-b)^{2}}{16}$+$\frac{(y+a-b)^{2}}{5}$+$\frac{(z-a)^{2}}{4}$=1,求x,y,z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-1|.
(Ⅰ)解不等式:f(x)+f(x-1)≤2,;
(Ⅱ)若a>0,求证:f(ax)-af(x)≤f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是$0<a≤\frac{1}{2}$或a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有4人参加抽奖活动,每人依次从装有4张奖票(其中2张为中奖票)的箱子中不放回地随机抽取一张,直到2张中奖票都被抽出时活动结束,则活动恰好在第3人抽完后结束的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案