精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若f(x)在x=1处取得极值,讨论函数f(x)的单调性;
(II)当a=1时,设函数φ(x)=f(x)-x2有两个零点x1,x2
(i)求b的取值范围;
(ii)证明:x1x2>e2

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)(i)问题转化为方程b+1=$\frac{lnx}{x}$在(0,+∞)有2个不同实根,设g(x)=$\frac{lnx}{x}$,(x>0),根据函数的单调性求出b的范围即可;
(ii)构造函数M(x)=g(x)-g($\frac{{e}^{2}}{x}$)=$\frac{lnx}{x}$+$\frac{x•lnx-2x}{{e}^{2}}$,求出函数的导数,根据函数的道德底线证明即可.

解答 解:(Ⅰ)f′(x)=$\frac{a}{x}$-(a+b)+2x,
由f(x)在x=1处取极值,得f′(1)=0,解得:b=2,
故f′(x)=$\frac{2(x-\frac{a}{2})(x-1)}{x}$,
a=2时,f′(x)≥0,不满足f(x)在x=1处取极值,故a≠2;
①a≤0时,x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0,
故f(x)在(0,1)递减,在(1,+∞)递增;
②0<$\frac{a}{2}$<1即0<a<2时,0<x<$\frac{a}{2}$或x>1时,
f′(x)>0,$\frac{a}{2}$<x<1时,f′(x)<0,
故f(x)在(0,$\frac{a}{2}$),(1,+∞)递增,在($\frac{a}{2}$,1)递减;
③a>2时,0<x<1或x>$\frac{a}{2}$时,f′(x)>0,1<x<$\frac{a}{2}$时,f′(x)<0,
故f(x)在(0,1),($\frac{a}{2}$,+∞)递增,在(1,$\frac{a}{2}$)递减;
(Ⅱ)(i)a=1时,函数φ(x)=f(x)-x2=lnx-(1+b)x,
φ(x)有2个不相同零点x1,x2
即方程b+1=$\frac{lnx}{x}$在(0,+∞)有2个不同实根,
设g(x)=$\frac{lnx}{x}$,(x>0),则g′(x)=$\frac{1-lnx}{{x}^{2}}$,
x∈(  ),e)时,g′(x)>0,x∈(e,+∞)时,g′(x)<0,
故g(x)在(0,e)递增,在(e,+∞)递减,
故x=e时,g(x)max=g(e)=$\frac{1}{e}$,
∵g(1)=0,x∈(0,1)时,g(x)<0,x∈(1,+∞)时,g(x)>0,
故0<b+1<$\frac{1}{e}$,
b的范围是(-1,$\frac{1}{e}$-1),
(ii)由(i)得1<x1<e<x2
构造函数M(x)=g(x)-g($\frac{{e}^{2}}{x}$)=$\frac{lnx}{x}$+$\frac{x•lnx-2x}{{e}^{2}}$,
M′(x)=$\frac{(lnx-1){(x}^{2}{-e}^{2})}{{{e}^{2}x}^{2}}$,
x>e时,M′(x)>0恒成立,
故M(x)在(e,+∞)递增,
∵M(e)=0,故对任意x>e,M(x)>0,
故M(x2)=g(x2)-g($\frac{{e}^{2}}{{x}_{2}}$)>0,即g(x2)>g($\frac{{e}^{2}}{{x}_{2}}$),
∵g(x1)=g(x2),∴g(x1)>g($\frac{{e}^{2}}{{x}_{2}}$),
又x1∈(1,e),$\frac{{e}^{2}}{{x}_{2}}$∈(1,e),
由(i)得g(x)在(0,e)递增,
故x1>$\frac{{e}^{2}}{{x}_{2}}$,即x1x2>e2

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设全集U=R,A={x|x2-x-6≥0},B={x|x>1},则(∁UA)∪B=(  )
A.{x|x≥-2}B.{x|x>-2}C.{x|1<x<3}D.{x|1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=2sin2ωx+sin2ωx-1(x∈R)满足f(α)=-$\sqrt{2}$,f(β)=0且|α-β|的最小值为$\frac{3π}{4}$,则正数ω的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给定两个命题p,q,“¬(p∨q)为假”是“p∧q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${({\frac{5}{x}-\sqrt{x}})^n}$展开式中,只有第3项的二项式系数最大,且展开式中含x2项的系数为a,则$\int_1^{2a}{\frac{{{x^2}+1}}{x}}dx$=$\frac{3}{2}$+ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z1,z2在复平面内对应的点关于x轴对称,且z1=1+2i,则$\frac{z_1}{z_2}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{3}{5}+\frac{4}{5}i$C.$-\frac{1}{2}+\frac{3}{2}i$D.$-\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{x≥0}\end{array}\right.$,则目标函数z=y-3x的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,边长为4的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点P如图2.
(Ⅰ)求证:DP⊥EF;
(Ⅱ)求四棱锥P-BFDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanx=-$\frac{1}{2}$,则2sinxcosx=(  )
A.-$\frac{4}{5}$B.-3C.-$\frac{7}{5}$D.-$\frac{11}{5}$

查看答案和解析>>

同步练习册答案