精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A、
50
3
cm3
B、50cm3
C、
25
3
cm3
D、25cm3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:几何体为四棱柱,由三视图判断四棱柱的高为5,其底面是等腰梯形,再判断等腰梯形的上、下底边及高的值,代入棱柱的体积公式计算.
解答: 解:由三视图知:几何体为四棱柱,且四棱柱的高为5,
其底面是等腰梯形,等腰梯形的上、下底边分别为1,4,高为2,
∴几何体的体积V=
1+4
2
×2×5=25.
故选:D.
点评:本题考查了由三视图求几何体的体积,解答此类问题的关键是判定几何体的形状及相关几何量的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记曲线y=x2与y=
x
围成的区域为D,若利用计算机产生(0,1)内的两个均匀随机数x,y,则点(x,y)恰好落在区域D内的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
1-x
的定义域为M,则∁RM=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+αn•sin(x+αn),其中αi(i=1,2,…,n,n∈N*,n≥2)为已知实常数,x∈R,则下列命题中错误的是(  )
A、若f(0)=f(
π
2
)=0,则f(x)=0对任意实数x恒成立
B、若f(0)=0,则函数f(x)为奇函数
C、若f(
π
2
)=0,则函数f(x)为偶函数
D、当f2(0)+f2
π
2
)≠0时,若f(x1)=f(x2)=0,则x1-x2=2kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C的对边分别为a,b,c,且a,b,c依次成等差数列.
(Ⅰ)若向量
m
=(3,sinB)与
n
=(2,sinC)共线,求cosA的值;
(Ⅱ)若ac=8,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知盒中有n个黑球和m个白球,连续不放回地从中随机取球,每次取一个,直至盒中无球,规定:第i次取球若取到黑球得2i,取到白球不得分,记随机变量ξ为总的得分数.
(Ⅰ)当n=m=2时,求P(ξ=10);
(Ⅱ)若m=1,求随机变量ξ的期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下命题:
①一个简谐运动的函数表达式为f(x)=sin(
1
2
x+
4
)
,则这个简谐运动的函数的最小正周期为4π;
②已知函数f(x)=loga(x-
87
2
)+89,(a>0且a≠1)
恒过定点(m,n),则m,n使等式m=sin21°+sin22°+sin23°+…+sin2n°成立;
③对于函数f(x)=x2+ax+b和g(x)=logax(0<a<1),有f(
x1+x2
2
)≤f(x1)+f(x2)
g(
x1+x2
2
)≥g(x1)+g(x2)
成立;
④定义:若任意x∈A,总有a-x∈A,(A≠∅),就称集合A为a的闭集.已知集合A⊆{1,2,3,4,5,6},且A为6的闭集,则这样的集合A共有7个;
其中所有正确叙述的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
9
•cos
9
•cos(-
23π
9
)=(  )
A、-
1
8
B、-
1
16
C、
1
16
D、
1
8

查看答案和解析>>

同步练习册答案