分析 先在原图中作AD⊥MC交MC于点D,交BC于E点,将△ACM沿CM折起后,只要证明AE⊥底面BCM即可.
解答 解:在△ABC中,AB=4,AM=MB=MC=2,
由△AMC为等边三角形,取CM中点D,则AD⊥CM,设AD交BC与E,则AD=$\sqrt{3}$,DE=$\frac{\sqrt{3}}{3}$,CE=$\frac{2\sqrt{3}}{3}$.![]()
折起后,由BC2=AC2+AB2,知∠BAC=90°,
又cos∠ECA=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$.∴AE2=CA2+CE2-2CA•CEcos∠ECA=$\frac{8}{3}$,
于是AC2=AE2+CE2.∴∠AEC=90°.
∵AD2=AE2+ED2,∴AE⊥DE,
∴AE⊥平面BCM,即AE是三棱锥A-BCM的高,AE=$\frac{2\sqrt{6}}{3}$.
∵S△BCM=$\frac{1}{2}$×$2×2\sqrt{3}×sin30°$=$\sqrt{3}$,
∴VA-BCM=$\frac{1}{3}{S}_{△BCM}•AE$=$\frac{1}{3}×\sqrt{3}×\frac{2\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
故答案为:$\frac{2\sqrt{2}}{3}$.
点评 本题考查由平面图形折成空间图形求其体积,求此三棱锥的高是解决问题的关键.本题还可以直接过点A作AE⊥BC交BC于E点,连接ME,证明AE⊥ME,即可说明AE⊥底面BCM.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{7}{3}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log23<log35 | B. | ?x∈(-∞,0),ex>x+1 | ||
| C. | ${log_{\frac{1}{2}}}3<{(\frac{1}{2})^3}<{3^{\frac{1}{2}}}$ | D. | ?x>0,x>sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 2π | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com