精英家教网 > 高中数学 > 题目详情
13.下列命题中的假命题是(  )
A.log23<log35B.?x∈(-∞,0),ex>x+1
C.${log_{\frac{1}{2}}}3<{(\frac{1}{2})^3}<{3^{\frac{1}{2}}}$D.?x>0,x>sinx

分析 对于A.log23>$lo{g}_{2}\sqrt{8}$=$\frac{3}{2}$,log35<$lo{g}_{3}\sqrt{27}$=$\frac{3}{2}$,即可判断出真假.
对于B.?x∈(-∞,0),令f(x)=ex-x-1,利用导数研究函数的单调性极值与最值,即可判断出真假.
对于C.根据$lo{g}_{\frac{1}{2}}3$<0<$\frac{1}{8}$=$(\frac{1}{2})^{3}$<1$<\sqrt{3}$=${3}^{\frac{1}{2}}$,即可判断出真假.
对于D.令f(x)=x-sinx,x∈(0,+∞),利用导数研究函数的单调性极值与最值即可得出.

解答 解:对于A.∵log23>$lo{g}_{2}\sqrt{8}$=$\frac{3}{2}$,log35<$lo{g}_{3}\sqrt{27}$=$\frac{3}{2}$,∴log23>log35,因此是假命题.
对于B.?x∈(-∞,0),令f(x)=ex-x-1,f′(x)=ex-1<0,因此函数f(x)单调递减,∴f(x)>f(0)=0,∴ex>x+1,因此是真命题.
对于C.∵$lo{g}_{\frac{1}{2}}3$<0<$\frac{1}{8}$=$(\frac{1}{2})^{3}$<1$<\sqrt{3}$=${3}^{\frac{1}{2}}$,因此是真命题.
对于D.令f(x)=x-sinx,x∈(0,+∞),则f′(x)=1-cosx≥0,因此函数f(x)在x∈(0,+∞)上单调递增,∴f(x)>f(0)=0,因此是真命题.
故选:A.

点评 本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知扇形周长为8,面积为4,则圆心角为2弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数y=f(x)的图象与y=2x-a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,∠C=90°,BC=2$\sqrt{3}$,AC=2,M为AB中点,将△ACM沿CM折起,使A、B之间的距离为2$\sqrt{2}$,则三棱锥M-ABC的体积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A、B、C、D四点,若双曲线C1的一个焦点为F(-$\sqrt{2}$,0),且四边形ABCD的面积为$\frac{16}{3}$,则双曲线C1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等边三角形ABC中,若$\overrightarrow{AP}=λ\overrightarrow{AB}+\overrightarrow{AC}$,则当$\overrightarrow{PB}•\overrightarrow{PC}$取得最小值时,λ=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛掷两枚质地均匀的正四面体骰子,其4个面分别标有数字1,2,3,4,记每次抛掷朝下一面的数字中较大者为a(若两数相等,则取该数),平均数为b,则事件“a-b=1”发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)满足f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf'(x)<0成立,若a=(20.6)•f(20.6),b=(ln2)•f(ln2),c=(${{{log}_2}\frac{1}{8}}$)•f(${{{log}_2}\frac{1}{8}}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列结论中正确的个数是(  )
①若a>b,则am2>bm2
②在线性回归分析中,相关系数r越大,变量间的相关性越强;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④已知l,m为两条不同直线,α,β为两个不同平面,若α∩β=l,m∥α,m∥β,则m∥l.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案