精英家教网 > 高中数学 > 题目详情
19.一个盒子里装有标号为1,2,3,4,5的5张标签,随机地抽取了3张标签,则取出的3张标签的标号的平均数是3的概率为$\frac{1}{5}$.

分析 从1,2,3,4,5这五个数中任取3个数,先求出基本基本事件总数,再用列举法求出三个数的平均数是3包含的基本事件个数,由此能求出取出的3张标签的标号的平均数是3的概率.

解答 解:从1,2,3,4,5这五个数中任取3个数,
用列举法可知,共有10种情况,
而其中三个数的平均数是3的只有1,3,5和2,3,4两种情况,
∴取出的3张标签的标号的平均数是3的概率为$p=\frac{2}{10}=\frac{1}{5}$.
故答案为:$\frac{1}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.网格纸上小正方形的边长为1,如图画出的是某几何体的三视图,则该几何体的体积为(  )
A.44B.56C.68D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)(  )
A.在[0,3]上是减函数B.在[-3,0]上是减函数
C.在[0,π]上是减函数D.在[-π,0]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点O是边长为1的正△ABC的中心(如图所示),则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=(  )
A.$\frac{1}{9}$B.-$\frac{1}{9}$C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知b∈R,若(2+bi)(2-i)为纯虚数,则|1+bi|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)的最小值是-2,其图象经过点M($\frac{π}{3}$,1).
(1)求f(x)的解析式;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\frac{8}{5}$,f(β)=$\frac{24}{13}$,求f(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,若AB=2,∠BAD=60°.则当四棱锥P-ABCD的体积等于2$\sqrt{3}$时,则PC=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2x}{3x+2}$,数列{an}满足a1=1,an+1=f(an).
(1)求数列{an}的通项公式;
(2)(理)设bn=anan+1,数列{bn}的前n项和为Sn,若Sn<$\frac{m-2016}{2}$对一切正整数n都成立,求最小的正整数m的值.
(2)(文)设bn=$\frac{1}{a_n}$×2n,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}}$},N={x|sinx>0},则M∩N为(  )
A.{$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}$}B.{$\frac{π}{2}$,$\frac{π}{3}$}C.{$\frac{π}{3}$,-$\frac{π}{4}$}D.{$\frac{π}{2}$,-$\frac{π}{4}$}

查看答案和解析>>

同步练习册答案