精英家教网 > 高中数学 > 题目详情
2.集合A={x|y=lg(1-x)},B={a|关于x的方程x2-2x+a=0有实解},则A∩B=(  )
A.B.(-∞,1)C.[0,1)D.(0,1]

分析 求出A中x的范围确定出A,求出B中a的范围确定出B,找出两集合的交集即可.

解答 解:由A中y=lg(1-x),得到1-x>0,即x<1,
∴A=(-∞,1);
由B中方程x2-2x+a=0有实解,得到△=4-4a≥0,即a≤1,
∴B=(-∞,1],
则A∩B=(-∞,1),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列数列中为递增数列的是(  )
A.{sinnπ}B.{n2-9n+5}C.{$\frac{2n+1}{{n}^{2}}$}D.{$\frac{{n}^{2}}{{n}^{2}+1}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x=$\frac{1}{2}$,则(3+2x)10的展开式中最大的项为(  )
A.第一项B.第三项C.第六项D.第八项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a≥0,函数f(x)=x2-5丨x-a丨+2a.
(Ⅰ)若函数f(x)在[0,3]上单调,求实数a的取值范围;
(Ⅱ)若存在实数x1、x2,满足(x1-a)(x2-a)<0,且f(x1)=f(x2),求当a变化时,x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x的不等式组$\left\{\begin{array}{l}{{x}^{2}-2x>0}\\{{2x}^{2}+(2k+5)x+5k<0}\end{array}\right.$的整数解的集合为{-2,-1},则实数k的取值范围为-3≤k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式x2+bx+x>0的解集为{x|x<-2或x>-1}.
(1)求b和c的值.
(2)求不等式cx2+bx+a≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P(1,4)在直线mx+ny-1=0(m>0,n>0)上,则$\frac{1}{m}+\frac{1}{n}$的最小值是(  )
A.9B.12C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=-\frac{2}{x+1}$在(2,+∞)上的最小值是(  )
A.-2B.$-\frac{2}{3}$C.$-\frac{3}{2}$D.无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+ax2+b满足f(1)=0,且在x=2时函数取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.

查看答案和解析>>

同步练习册答案