精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f(
π
4
)=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f(
α
4
)=-
2
5
,α∈(
π
2
,π),求sin(α+
π
3
)的值.
考点:三角函数中的恒等变换应用,函数奇偶性的性质
专题:三角函数的求值
分析:(1)把x=
π
4
代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.
(2)利用f(
α
4
)=-
2
5
和函数的解析式可求得sin
α
2
,进而求得cos
α
2
,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.
解答: 解:(1)f(
π
4
)=-(a+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴a+1=0,即a=-1
∵f(x)为奇函数,
∴f(0)=(a+2)cosθ=0,
∴cosθ=0,θ=
π
2

(2)由(1)知f(x)=(-1+2cos2x)cos(2x+
π
2
)=cos2x•(-sin2x)=-
1
2
sin4x

∴f(
α
4
)=-
1
2
sinα=-
2
5

∴sinα=
4
5

∵α∈(
π
2
,π),
∴cosα=
1-
16
25
=-
3
5

∴sin(α+
π
3
)=sinαcos
π
3
+cosαsin
π
3
=
4-3
3
10
点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-a)2+(y-b)2=1,设平面区域Ω=
x+y-7≤0
x-y+3≥0
y≥0
,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为(  )
A、5B、29C、37D、49

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+bx+b)
1-2x
(b∈R)
(1)当b=4时,求f(x)的极值;
(2)若f(x)在区间(0,
1
3
)上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立,试比较ea-1与ae-1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2
x
•log 
2
(2x)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:当a、b、c为正数时,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知x>0,y>0,证明不等式:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,则|
AB
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是
 

查看答案和解析>>

同步练习册答案