| A. | x2+y2-2x+4y=0 | B. | x2+y2+2x+4y=0 | C. | x2+y2+2x-4y=0 | D. | x2+y2-2x-4y=0 |
分析 直线即 a(x-1)-(x+y+1)=0,由$\left\{\begin{array}{l}{x-1=0}\\{x+y+1=0}\end{array}\right.$,求得圆心C的坐标,再根据半径为$\sqrt{5}$,求得圆的标准方程,整理即可.
解答 解:直线(a-1)x-y-a-1=0 即 a(x-1)-(x+y+1)=0,
由 $\left\{\begin{array}{l}{x-1=0}\\{x+y+1=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,故圆心C的坐标为(1,-2),
再根据半径为$\sqrt{5}$,
可得圆的方程为 (x-1)2+(y+2)2=5,
即x2+y2-2x+4y=0,
故选:A.
点评 本题主要考查直线过定点问题,求两条直线的交点坐标,求圆的标准方程的方法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y=0 | B. | x+y=2 | C. | x-y=2 | D. | x-y=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com