精英家教网 > 高中数学 > 题目详情
7.已知集合A={a,b},B={c,d,e},从A到B的不同映射个数是(  )
A.6B.8C.9D.5

分析 根据定义可以先确定集合A中元素个数,及集合B的元素个数,然后代入映射个数公式,即可得到答案.

解答 解:∵card(A)=2,card(B)=3
则从A到B的映射的个数为32=9个
故选:C.

点评 若集合M有m个元素,集合N有n个元素,则从集合M到集合N可以建立nm个映射,从集合N到集合M可以建立mn个映射.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知定义在R上的函数f(x)满足f(x+4)=f(x)+f(2).若函数y=f(x-1)的图象关于直线x=1对称,求f(2018);
(2)已知函数f(x)=$\sqrt{m{x^2}+(m-3)x+1}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的各项均为正数,且a1=1,对任意的n∈N*,均有an+12-1=4an(an+1),bn=2log2(1+an)-1.
(1)求证:{1+an}是等比数列,并求出{an}的通项公式;
(2)若数列{bn}中去掉{an}的项后,余下的项组成数列{cn},求c1+c2+…+c100
(3)设dn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,数列{dn}的前n项和为Tn,是否存在正整数m(1<m<n),使得T1、Tm、Tn成等比数列,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z满足iz=|1-i|,则z的虚部为$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=f(x)的图象关于直线x=1对称,且在[1,+∞)单调递减,f(0)=0,则f(x+1)>0的解集为(  )
A.(1,+∞)B.(-1,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=x2 与直线y=x 所围成的封闭图形的面积为(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2≤4,x∈R},B={x|log2x≤2,x∈Z},则A∩B=(  )
A.(0,2)B.[0,2]C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的解析式.
(1)已知f(x)=x2+2x,求f(2x+1);
(2)已知f($\sqrt{x}$-1)=x+2$\sqrt{x}$,求f(x);
(3)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在[0,+∞)上的函数f(x)满足f(x+1)=2f(x),当x∈[0,1)时,f(x)=-x2+x.设f(x)在[n-1,n)上的最大值为an(n∈N*),则a3+a4+a5=(  )
A.7B.$\frac{7}{8}$C.$\frac{5}{4}$D.14

查看答案和解析>>

同步练习册答案