精英家教网 > 高中数学 > 题目详情
10.已知数列{an},a2=2,an+an+1=3n,n∈N*,则a2+a4+a6+a8+a10+a12=57.

分析 法一:通过具体罗列各项、进而相加即可;
法二:由递推关系进一步可得相邻几项之间的关系:an+2-an=3,进而可知a2,a4,a6,a8,a10,a12是以2为首项、以3为公差,共有6项的等差数列,利用等差数列求和公式计算即可.

解答 解法一:由题可知a3=4,a4=5,a5=7,a6=8,a7=10,
a8=11,a9=13,a10=14,a11=16,a12=17,
所以a2+a4+a6+a8+a10+a12=57;
解法二:因为an+an+1=3n,
所以an+1+an+2=3n+3,
两式相减可得an+2-an=3,
所以数列{an}隔项成等差数列,
所以a2,a4,a6,a8,a10,a12是以2为首项、以3为公差,共有6项的等差数列,
所以a2+a4+a6+a8+a10+a12=$6×2+\frac{6×5}{2}×3=57$.
故答案为:57.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则cosα-sinα的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0,且a≠1).若它们的图象上存在关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.(-∞,-1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设抛物线E:y2=4x的焦点为F,准线为l,过抛物线上一点P作l的垂线,垂足为A,设B(7,0),PF与AB交于点C,若△PBC的面积为2$\sqrt{2}$,则|PC|:|CF|=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且满足Sn=2an-2;数列{bn}的前n项和为Tn,且满足b1=1,b2=2,$\frac{T_n}{{{T_{n+1}}}}=\frac{b_n}{{{b_{n+2}}}}$.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得$\frac{{{a_n}+{b_n}+1}}{{{a_n}-{b_{n+1}}}}$恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.产品中有正品4件,次品3件,从中任取2件:
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
上述四组事件中,互为互斥事件的组数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的公差d<0,且a${\;}_{1}^{2}$=a${\;}_{17}^{2}$,则数列{an}的前n项和Sn取得最大时的项数n是(  )
A.8或9B.9或10C.10或11D.11或12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3x}{ax+b}$,f(1)=1,f($\frac{1}{2}$)=$\frac{3}{4}$,数列{xn}满足x1=$\frac{3}{2}$,xn+1=f(xn),n∈N*
(Ⅰ)求x2,x3
(Ⅱ)求数列{xn}的通项公式.
(Ⅲ)求证:$\sum_{k=1}^{n}\frac{{x}_{k}}{{3}^{k}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=x2+$\frac{1}{x}$在点(1,2)处的切线方程为x-y+1=0.

查看答案和解析>>

同步练习册答案