分析 (1)解关于an的一元二次方程求出an;
(2)Tn=(2•1+22•2+23•3+…+2n•n)-(1+2+3+…+n),利用裂项法求出第一部分的和,使用等差数列的求和公式求出第二部分的和.
解答 解:(1)∵an2-(2n-1)an-2n=0.
∴an=2n或an=-1.
∵an>0,
∴an=2n.
(2)bn=2n-1•2n-n=2n•n-n.
∴Tn=2•1-1+22•2-2+23•3-3+…+2n•n-n
=(2•1+22•2+23•3+…+2n•n)-(1+2+3+…+n)
=(2•1+22•2+23•3+…+2n•n)-$\frac{1+n}{2}•n$.
设2•1+22•2+23•3+…+2n•n=S,①
则22•1+23•2+24•3+…+2n•(n-1)+2n+1•n=2S,②
①-②得:-S=2+22+23+…+2n-2n+1•n=$\frac{2(1-{2}^{n})}{1-2}$-2n+1•n=2n+1-2-2n+1•n.
∴S=2n+1•n-2n+1+2,
∴Tn=S-$\frac{1+n}{2}•n$=2n+1•(n-1)-$\frac{{n}^{2}}{2}$-$\frac{n}{2}$+2.
点评 本题考查了裂项法数列求和,根据数列特点选择合理的求和方法是解决此类题目的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | b>a>c | C. | c>a>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=4sin(4x+$\frac{π}{6}$) | B. | y=4sin(4x+$\frac{π}{3}$) | C. | y=2sin(4x+$\frac{π}{3}$) | D. | y=2sin(4x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16π | B. | 64π | C. | 124π | D. | 156π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com