精英家教网 > 高中数学 > 题目详情
15.化简:$\frac{{cos(\frac{3π}{2}+α)cos(3π-α)tan(-π-α)tan(α-2π)}}{tan(4π-α)sin(5π+α)}$.

分析 由已知利用诱导公式,同角三角函数基本关系式即可化简得解.

解答 解:原式=$\frac{sinα(-cosα)(-tanα)tanα}{(-tanα)(-sinα)}$
=(-cosα)tanα
=-sinα

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(x)=f(x+1)-f(x-1)(x∈R),且f(2)=1,则f(2012)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设曲线y=2015xn+1(n∈N*)在点(1,2015)处的切线与x轴的交点的横坐标为xn,令an=log2015xn,则a1+a2+…a2014的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列积分值为2的是(  )
A.${∫}_{0}^{1}$2xdxB.01exdxC.${∫}_{1}^{e}$$\frac{1}{x}$dxD.0πsinxdx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大学自主招生面试时将20名学生平均分成甲,乙两组,其中甲组有4名女学生,乙组有6名女学生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行第一轮面试.
(Ⅰ)求从甲、乙两组各抽取的人数;
(Ⅱ)求从甲组抽取的学生中恰有1名女学生的概率;
(Ⅲ)求抽取的4名学生中恰有2名男学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在[-1,+∞]上的函数在区间[-1,3)上的解析式为f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,当x≥3时,函数满足f(x)=f(x-4)+1,若函数g(x)=f(x)-kx-k有6个零点,则实数k的取值或取值范围为(  )
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P(1,1)和圆C:x2+y2=4,过P的直线l与圆C交于A,B,则弦AB长的最小值为2$\sqrt{2}$;此时的直线l的方程为x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正项数列{an}满足:an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=2n-1 an-n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求f(x)=($\frac{1}{3}$)x+lg${\;}_{\frac{1}{2}}$x(0<x≤2)最小值.

查看答案和解析>>

同步练习册答案