分析 由题设条件知,可构造出f(x+1)=f(x)+f(x+2),与f(x)=f(x-1)+f(x+1)联立解出函数的周期,再求函数值.
解答 解:因为f(x)=f(x+1)-f(x-1)
所以f(x+1)=f(x+2)-f(x)即f(x+2)=-f(x+1)+f(x)
两式相加得f(x+2)=-f(x-1)
即:f(x+3)=-f(x)
∴f(x+6)=-f(x+3)=f(x)
f(x)是以6为周期的周期函数.
f(2)=1,2012=6×335+2,
∴f(2012)=f(2)=1.
故答案为:1.
点评 本题考查对抽象函数表达式的理解和运用,解题的关键是由恒等变形得出函数的周期,本题的难点观察出解题的方向是研究函数的周期性,此类题有一个明显的特征那就是题设条件中必有恒等式,且要求的函数值自变量与已知函数值的自变量差值较大,不可能通过恒等式变形求出,题后注意总结这一特征,方便以后遇到同类题时能快速想到解题的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com