2£®½üÁ½ÄêÀ´£¬¸÷´óµçÊǪ́¶¼ÍƳöÁËÓÉÃ÷ÐDzÎÓëµÄÓÎÏ·¾º¼¼Àà½ÚÄ¿£¬¸ßһijÑо¿ÐÔѧϰС×éÔÚijÉçÇø¶Ô50È˽øÐÐÁ˵Úһʱ¼äÊÕ¿´¸ÃÀà½ÚÄ¿ÓëÐÔ±ðÊÇ·ñÓйصÄÊÕÊÓµ÷²é£¬ÆäÖÐ20ÃûÅ®ÐÔÖÐÓÐ15ÃûµÚһʱ¼äÊÕ¿´¸ÃÀà½ÚÄ¿£¬30ÃûÄÐÐÔÖÐÓÐ10ÃûµÚһʱ¼äÊÕ¿´¸ÃÀà½ÚÄ¿£®
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2ÁÐÁª±í£¬²¢ÅжÏÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.5%µÄǰÌáÏÂÄÜ·ñÈÏΪµÚһʱ¼äÊÕ¿´¸ÃÀà½ÚÄ¿ÓëÐÔ±ðÓйأ¿
£¨2£©¸ÃÑо¿ÐÔѧϰС×é¹²ÓÐA¡¢B¡¢C¡¢DºÍEÎåÃûͬѧ£¬ÎåÈË·Ö³ÉÁ½×éÄ£Ä⡰˺ÃûÅÆ¡±µÄÓÎÏ·£¬ÆäÖÐÒ»×éÈýÈË£¬Ò»×éÁ½ÈË£¬ÇóA¡¢BÁ½Í¬Ñ§·ÖÔÚͬһ×éµÄ¸ÅÂÊ
²Î¿¼Êý¾Ý£ºX2=$\frac{m£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
ÁÙ½çÖµ±í£º
P£¨X2¡Ýk£©0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

·ÖÎö £¨1£©¸ù¾ÝÌõ¼þÖÐËù¸øµÄÊý¾Ý£¬Ð´³öÁÐÁª±í£¬°ÑÊý¾Ý´úÈ빫ʽ£¬Çó³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϣ¬µÃµ½½áÂÛ£»
£¨2£©Çó³ö»ù±¾Ê¼þµÄ¸öÊý£¬¼´¿ÉÇóA¡¢BÁ½Í¬Ñ§·ÖÔÚͬһ×éµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©2¡Á2ÁÐÁª±íÈçÏ£º

 µÚһʱ¼äÊÕ¿´²»ÔÚµÚһʱ¼äÊÕ¿´ºÏ¼Æ
Å®ÐÔ15520
ÄÐÐÔ102030
ºÏ¼Æ252550
¡àk2=$\frac{50¡Á£¨15¡Á20-10¡Á5£©^{2}}{25¡Á25¡Á20¡Á30}$¡Ö8.333£¾7.879
¡àÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.5%µÄǰÌáÏÂÄÜ·ñÈÏΪµÚһʱ¼äÊÕ¿´¸ÃÀà½ÚÄ¿ÓëÐÔ±ðÓйأ»
£¨2£©ËùÓеÄÈýÈËÒ»×éµÄ·Ö×éÓУ¨ABC£©£¬£¨ABD£©£¬£¨ABE£©£¬£¨ACD£©£¬£¨ACE£©£¬£¨ADE£©£¬£¨BCD£©£¬£¨BCE£©£¬£¨BDE£©£¬£¨CDE£©¹²10¸ö»ù±¾Ê¼þ£¬ÆäÖÐA£¬Bͬ×éµÄÓУ¨ABC£©£¬£¨ABD£©£¬£¨ABE£©£¬£¨CDE£©¹²4¸ö»ù±¾Ê¼þ£¬
¹ÊA£¬BÁ½Í¬Ñ§·ÖÔÚͬһ×éµÄ¸ÅÂÊΪ$\frac{2}{5}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑ飬¿¼²é¸ÅÂʵļÆË㣬ÊÇÒ»¸ö»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®3B£®$2\sqrt{2}$C£®$\sqrt{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚÖ±ÈýÀâÖùABC-A¡äB¡äC¡äÖУ¬ËùÓеÄÀⳤ¶¼ÏàµÈ£¬MΪB¡äC¡äµÄÖе㣬NΪA¡äB¡äµÄÖе㣬ÔòAMÓëBNËù³É½ÇµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{{2\sqrt{5}}}{7}$B£®$\frac{{\sqrt{35}}}{14}$C£®$-\frac{{2\sqrt{5}}}{7}$D£®$-\frac{{\sqrt{35}}}{14}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔĶÁÈçͼ³ÌÐò¿òͼ£¬ÎªÊ¹Êä³öµÄÊý¾ÝΪ15£¬Ôò¢Ù´¦Ó¦ÌîµÄÊý×ÖΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®µÈ±ÈÊýÁÐ{an}ÖУ¬a5¡¢a7ÊǺ¯Êýf£¨x£©=x2-4x+3µÄÁ½¸öÁãµã£¬Ôòa3•a9µÈÓÚ£¨¡¡¡¡£©
A£®-4B£®-3C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÆäÓÒ½¹µãFµ½ÍÖÔ²CµÄÆäÖÐÈý¸ö¶¥µãµÄ¾àÀë°´Ò»¶¨Ë³Ðò¹¹³ÉÒÔ$\sqrt{3}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÇÒ¸ÃÊýÁеÄÈýÏîÖ®ºÍµÈÓÚ6£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßABÓëÍÖÔ²C½»ÓÚµãA£¬B£¨AÔÚµÚÒ»ÏóÏÞ£©£¬Âú×ã2$\overrightarrow{OA}$+$\overrightarrow{OB}$=¦Ë$\overrightarrow{OF}$£¬µ±¡÷0ABÃæ»ý×î´óʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÖÐÐÄÔÚÔ­µãµÄÍÖÔ²CµÄÒ»¸ö¶¥µãÊÇÔ²E£ºx2+y2-4x+3=0µÄÔ²ÐÄ£¬Ò»¸ö½¹µãÊÇÔ²EÓëxÖáÆäÖеÄÒ»¸ö½»µã£¬ÔòÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a3=5£¬a4=2a2+a1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©Éèbn=$\frac{1}{{a}_{n}•{a}_{n+1}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£®
£¨i£©ÇóTn£»
£¨ii£©ÈôT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬m£¾1£¬ÇóÕýÕûÊým£¬nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¹ýÍÖÔ²§¤£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1ÍâÒ»µãP£¨x0£¬y0£©£¨x0¡Ù¡À2ÇÒy0¡Ù0£©ÏòÍÖÔ²§¤×÷ÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬Ö±ÏßAB½»yÖáÓÚM£¬¼ÇÖ±ÏßPA¡¢PB¡¢PMµÄбÂÊ·Ö±ðΪk1¡¢k2¡¢k0£®
£¨1£©µ±µãPµÄ×ø±êΪ£¨4£¬3£©Ê±£¬ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©µ±x0¡Ù0ʱ£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$=$\frac{¦Ë}{{k}_{0}}$ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸