精英家教网 > 高中数学 > 题目详情

(12分)若是定义在上的增函数,且对一切,满足.
(1)求的值;
(2)若,解不等式

⑴       ⑵ 

解析试题分析:解(1)在中令
则有   ∴
(2)∵   ∴  即: ∵上的增函数
 解得 即不等式的解集为(-3,9)
考点:本题主要考查赋值法以及对抽象函数单调性的考查并利用函数单调性解不等式
点评:本题已经告知函数在上的单调性,实质已经降低了本题的难度,本题还可不给单调性而增加条件比如:当时,让学生自己证明函数在相应区间的单调性,进一步考查定义法证明函数单调性的方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是偶函数,且时,
(1)求当>0时的解析式;   (2) 设,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,且
(1)求函数的解析式;
(2)用单调性的定义证明上是增函数;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),
如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,求每立方米空气中的含药量
y(毫克)与时间t(小时)之间的函数关系式?
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)设函数
(1)证明函数是偶函数;
(2)若方程有两个根,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设为奇函数,为常数.
(1)求的值;
(2)求的值;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数 :
(1)写出此函数的定义域和值域;
(2)证明函数在为单调递减函数;
(3)试判断并证明函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数f(x)=,
(1)判断函数的奇偶性;(2)证明f(x)是R上的增函数; (3)求该函数的值域;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且,其中是自然对数的底数.
(1)求的关系;
(2)若在其定义域内为单调函数,求的取值范围.

查看答案和解析>>

同步练习册答案