精英家教网 > 高中数学 > 题目详情
已知a,b∈R+,ab=9,则a+4b的最小值是
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式即可得出.
解答: 解:∵a,b∈R+,ab=9,
∴a+4b≥2
4ab
=12,当且仅当a=4b=6时取等号.
故答案为:12.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=4sin(2x+
3
)(x∈R),有下列命题:
(1)由f(x1)=f(x2)=0,可得x1-x2必定是π的整数倍;
(2)y=f(x)的表达式可改写为y=4cos(2x+
π
6
);
(3)y=f(x)的图象关于点(
π
6
,0)对称;
(4)y=f(x)的图象关于直线x=-
π
6
对称,其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的序号是
 

(1)x∈R,y=f(x)-f(-x)是奇函数
(2)x∈R,y=|f(x)|是偶函数
(3)f(x)在R上是增函数,则f(f(x))在R上也是增函数
(4)若f(x),g(x)均为R上的增函数,则y=f(x)g(x)在R上也是增函数
(5)若f(x)在R上是增函数,则
1
f(x)
在R上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三边为a,b,c,若f(x)=b2x2+(b2+c2-a2)x+c2,则y=f(x)的零点个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+
4
x-1
的值域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的一元二次方程x2-mx+1=0有两个不同的实数根,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当x∈(-1,1]时,f(x)=x,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个非零向量
a
=(m-1,n-1)和
b
=(m-3,n-3),若cos<
a
b
>=0,则m+n的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c∈R,且ac2>bc2,则(  )
A、ac>bc
B、a>b
C、|a|>|b|
D、a2>b2

查看答案和解析>>

同步练习册答案