精英家教网 > 高中数学 > 题目详情
已知a,b,c依次为函数f(x)=2x+x,g(x)=log2x-1,h(x)=2x-log 
1
2
x的零点,则a,b,c的大小关系为(  )
A、a<b<c
B、a<c<b
C、c<a<b
D、b<a<c
考点:不等关系与不等式
专题:不等式的解法及应用
分析:利用函数的零点定义、指数函数与对数函数的单调性即可判断出.
解答: 解:由f(a)=2a+a=0,可得a=-2a<0.
由g(b)=log2b-1=0,解得b=2.
由h(c)=2c-log
1
2
c
=0,化为log
1
2
c
=2c>1(c>0),∴0<c<
1
2

由以上可得:a<c<b.
故选;B.
点评:本题考查了函数的零点定义、指数函数与对数函数的单调性,考查了推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sin2α+2sin2β=2cosα,则sin2α+sin2β的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的三视图如图所示,则这个空间几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax5+bx+2,(ab≠0),若f(3)=9,则f(-3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z=
2i
5+4i
(i是虚数单位)对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=
3
5
,且
17π
12
<x<
4
,则sin2x的值为(  )
A、
7
2
25
B、-
7
2
25
C、
7
25
D、-
7
25

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数f(x)=sinx+cosx的图象,可将函数g(x)=sinx-cosx的图象(  )
A、向左平移
π
4
个单位
B、向右平移
π
4
个单位
C、向右平移
π
2
个单位
D、向左平移
π
2
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+m与抛物线y2=4x没有公共点,则m的取值范围为(  )
A、(-∞,-
1
2
B、(-
1
2
1
2
C、(
1
2
,+∞)
D、[
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z1=1+i,z2=1-i,则
z1
z2
+
z2
z1
=(  )
A、0B、1C、2iD、-2i

查看答案和解析>>

同步练习册答案