精英家教网 > 高中数学 > 题目详情
5.已知集合A={1,2,3,4},集合B={x|x2-2x<0},则集合A∩B中元素的个数为(  )
A.1B.2C.3D.4

分析 先求出集合A、集合B,从而求出集合A∩B,由此能求出集合A∩B中元素的个数.

解答 解:∵集合A={1,2,3,4},
集合B={x|x2-2x<0}={x|0<x<2},
∴集合A∩B={1}.
∴集合A∩B中元素的个数为1.
故选:A.

点评 本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,3),m∈R,若$\overrightarrow{a}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则m=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱柱ABC-A1B1C1中,四边形AA1BB1是菱形,∠BB1A1=$\frac{π}{3},{C_1}{B_1}⊥面A{A_1}B{B_1}$,二面角C-A1B1-B为$\frac{π}{6}$,CB=1.
(Ⅰ)求证:平面ACB1⊥平面CBA1
(Ⅱ)求二面角A-A1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则$\frac{1}{2a}+\frac{2}{b}$的最小值为(  )
A.10B.8C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的公差d≠0,a1=2d,若ak是a1与a2k+7的等比中项,则k=(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,若$f(x)=(\frac{1}{x}+a){e^x}$在区间(0,1)上有且只有一个极值点,则a的取值范围是(  )
A.a<0B.a>0C.a≤1D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{2}{i(3-i)}$=(  )
A.$\frac{1-3i}{5}$B.$\frac{1+3i}{5}$C.$\frac{3+i}{5}$D.$\frac{3-i}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足i(z-1)=1+i(i虚数单位),则z=(  )
A.2-iB.2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案