精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)对任意x∈R都有f(x+4)+f(x)+f(4)=0,函数f(x+3)的图象关于点(-3,0)对称,则f(2016)=0.

分析 先利用函数y=f(x+3)的图象关于点(-3,0)对称,得到函数y=f(x)是奇函数,然后求出f(4)=0,最后利用函数的周期性求f(2016)的值.

解答 解:因为函数f(x+3)的图象关于点(-3,0)对称,所以函数f(x)的图象关于点(0,0)对称,即为奇函数;
令x=-2得,f(-2+4)+f(-2)=-f(4),即f(2)-f(2)=-f(4),解得f(4)=0.
所以f(x+4)+f(x)=0,即f(x+4)=-f(x)=f(-x),
所以f(x+8)=f(x),即函数的周期是8.
所以f(2016)=f(8×252)=f(0)=0;
故答案为:0.

点评 本题主要考查函数奇偶性和周期性的应用,要求熟练掌握函数奇偶性和周期性的定义和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图建立空间直角坐标系,已知正方体的棱长为2.
(1)求正方体各顶点的坐标;
(2)求A1C的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阅读如图的程序框图,若输入的a、b、c分别是20、32、77,则输出的a、b、c分别是(  )
A.20、32、77B.77、20、32C.32、20、77D.77、32、20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正四面体P-ABC的棱长为2,若M,N分别是PA,BC的中点,则三棱锥P-BMN的体积为$\frac{\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=x4,g(x)=($\frac{1}{3}$)x-λ,若对任意的x1∈[-1,2],存在x2∈[-1,2],使f(x1)≥g(x2)成立,则实数λ的取值范围是(  )
A.λ≥$\frac{1}{9}$B.λ≥2C.λ≥-$\frac{8}{9}$D.λ≥-13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了保护环境发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x,x∈[120,144]}\\{\frac{1}{2}{x}^{2}-100x+80000,x∈[144,400]}\end{array}\right.$且每处理一吨二氧化碳得到可利用的化工产品价值为300元,若该项目不获利,国家将给予补偿.
(Ⅰ)当x∈[150,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(Ⅱ)该项目每月处理量为多少吨时?才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$a={({\frac{3}{5}})^4}$,$b={({\frac{3}{5}})^3}$,$c={log_3}\frac{3}{5}$,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为(  )
A.4π+8B.4π+12C.8π+8D.8π+12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个命题中,真命题的是(  )
A.空间中两组对边分别相等的四边形为平行四边形
B.所有梯形都有外接圆
C.所有的质数的平方都不是偶数
D.不存在一个奇数,它的立方是偶数

查看答案和解析>>

同步练习册答案